• Title/Summary/Keyword: p-MOS

Search Result 201, Processing Time 0.034 seconds

Electrical Characterization of $HfO_2$/Hf/Si MOS Capacitor with Thickness of Hf Metal Layer (Hf metal layer의 두께에 따른 $HfO_2$/Hf/Si MOS 커패시터의 전기적 특성)

  • Bae, Kun-Ho;Do, Seung-Woo;Lee, Jae-Sung;Lee, Yong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.9-10
    • /
    • 2007
  • In this paper, Thin films of $HfO_2$/Hf were deposited on p-type wafer by Atomic Layer Deposition(ALD). And we studied the electrical characterization of $HfO_2$/Hf/Si MOS capacitor depending on thickness of Hf metal layer. $HfO_2$ films were deposited using TEMAH and $O_3\;at\;350^{\circ}C$. Samples were then annealed using furnace heating to $500^{\circ}C$. The MOS capacitor of round-type was fabricated on Si substrates. Through TEM(Transmission Electron Microscope), XRD(X-ray Diffraction), capacitance-voltage(C-V) and current-voltage(I-V) analysis, the role of thin Hf metal layer for the better $HfO_2$/Si interface property was investigated.

  • PDF

The Electrical Characteristics of SRAM Cell with Stacked Single Crystal Silicon TFT Cell (단결정 실리콘 TFT Cell의 적용에 따른 SRAM 셀의 전기적 특성)

  • Lee, Deok-Jin;Kang, Ey-Goo
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.5
    • /
    • pp.757-766
    • /
    • 2005
  • There have been great demands for higher density SRAM in all area of SRAM applications, such as mobile, network, cache, and embedded applications. Therefore, aggressive shrinkage of 6T Full CMOS SRAM had been continued as the technology advances, However, conventional 6T Full CMOS SRAM has a basic limitation in the cell size because it needs 6 transistors on a silicon substrate compared to 1 transistor in a DRAM cell. The typical cell area of 6T Full CMOS SRAM is $70{\sim}90F^{2}$, which is too large compared to $8{\sim}9F^{2}$ of DRAM cell. With 80nm design rule using 193nm ArF lithography, the maximum density is 72M bits at the most. Therefore, pseudo SRAM or 1T SRAM, whose memory cell is the same as DRAM cell, is being adopted for the solution of the high density SRAM applications more than 64M bits. However, the refresh time limits not only the maximum operation temperature but also nearly all critical electrical characteristics of the products such as stand_by current and random access time. In order to overcome both the size penalty of the conventional 6T Full CMOS SRAM cell and the poor characteristics of the TFT load cell, we have developed $S^{3}$ cell. The Load pMOS and the Pass nMOS on ILD have nearly single crystal silicon channel according to the TEM and electron diffraction pattern analysis. In this study, we present $S^{3}$ SRAM cell technology with 100nm design rule in further detail, including the process integration and the basic characteristics of stacked single crystal silicon TFT.

  • PDF

Electrical Characteristics of SRAM Cell with Stacked Single Crystal Silicon TFT Cell (Stacked Single Crystal Silicon TFT Cell의 적용에 의한 SRAM 셀의 전기적인 특성에 관한 연구)

  • Kang, Ey-Goo;Kim, Jin-Ho;Yu, Jang-Woo;Kim, Chang-Hun;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.314-321
    • /
    • 2006
  • There have been great demands for higher density SRAM in all area of SRAM applications, such as mobile, network, cache, and embedded applications. Therefore, aggressive shrinkage of 6 T Full CMOS SRAM had been continued as the technology advances. However, conventional 6 T Full CMOS SRAM has a basic limitation in the cell size because it needs 6 transistors on a silicon substrate compared to 1 transistor in a DRAM cell. The typical cell area of 6 T Full CMOS SRAM is $70{\sim}90\;F^2$, which is too large compared to $8{\sim}9\;F^2$ of DRAM cell. With 80 nm design rule using 193 nm ArF lithography, the maximum density is 72 Mbits at the most. Therefore, pseudo SRAM or 1 T SRAM, whose memory cell is the same as DRAM cell, is being adopted for the solution of the high density SRAM applications more than 64 M bits. However, the refresh time limits not only the maximum operation temperature but also nearly all critical electrical characteristics of the products such as stand_by current and random access time. In order to overcome both the size penalty of the conventional 6 T Full CMOS SRAM cell and the poor characteristics of the TFT load cell, we have developed S3 cell. The Load pMOS and the Pass nMOS on ILD have nearly single crystal silicon channel according to the TEM and electron diffraction pattern analysis. In this study, we present $S^3$ SRAM cell technology with 100 nm design rule in further detail, including the process integration and the basic characteristics of stacked single crystal silicon TFT.

A Study on the new four-quadrant MOS analog multiplier using quarter-square technique

  • Kim, Won-U;Byeon, Gi-Ryang;Hwang, Ho-Jeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.6
    • /
    • pp.26-33
    • /
    • 2002
  • In this paper, a new four-quadrant MOS analog multiplier Is proposed using the quarter-square technique, which is based on the quadratic characteristics of MOS transistor operating in the saturation region and the difference operation of a source-coupled differential circuits. The proposed circuit has been fabricated in a p-well CMOS process. The multiplier achieves a total harmonic distortion of less than 1 percent for the both input ranges of 50 percent of power supply, a -3㏈ bandwidth of 30㎒ a dynamic range of 81㏈ and a power consumption of 40㎽. The active chip area is 0.54㎟. The supposed multiplier circuit is simple and adjust high frequency application because one input signal transfer output by one transistor.

Design of Temperature-Compensated Power-Up Detector (온도 변화에 무관한 출력 특성을 갖는 파워-업 검출기의 설계)

  • Ko, Tai-Young;Jun, Young-Hyun;Kong, Bai-Sun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.10
    • /
    • pp.1-8
    • /
    • 2009
  • In this paper, a temperature variation-insensitive power-up detector for use in analog and digital integrated systems has been proposed. To provide temperature-insensitive characteristic, nMOS and pMOS voltage dividers in the proposed power-up detector are made to have zero temperature coefficient by exploiting the fact that the effective gate-source voltage of a MOS transistor can result in mutual compensation of mobility and threshold voltage for temperature independency. Comparison results using a 68-nm CMOS process indicate that the proposed power-up detector achieves as small as 4 mV voltage variation at 1.0 V power-up voltage over a temperature range of $-30^{\circ}C$ to $90^{\circ}C$, resulting in 92.6% reduction on power-up voltage variations over conventional power-up detectors.

Switching Characteristics due to the Impurity Concentration and the Channel Length in Lateral MOS-controlled Thyristor (수평 구조의 MOS-controlled Thyristor에서 채널에서의 길이 및 불순물 농도에 의한 스위칭 특성)

  • Kim, Nam-Soo;Cui, Zhi-Yuan;Lee, Kie-Yong;Ju, Byeong-Kwon;Jeong, Tae-Woong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.1
    • /
    • pp.17-23
    • /
    • 2005
  • The switching characteristics of MOS-Controlled Thyristor(MCT) is studied with variation of the channel length and impurity concentration in ON and OFF FET channel. The proposed MCT power device has the lateral structure and P-epitaxial layer in substrate. Two dimensional MEDICI simulator and PSPICE simulator are used to study the latch-up current and forward voltage-drop from the characteristics of I-V and the switching characteristics with variation of channel length and impurity concentration in P and N channel. The channel length and N impurity concentration of the proposed MCT power device show the strong affect on the transient characteristics of current and power. The N channel length affects only on the OFF characteristics of power and anode current, while the N doping concentration in P channel affects on the ON and OFF characteristics.

Effect of WSi$_2$ Gate Electrode on Thin Oxide Properties in MOS Device (MOS 소자에서 WSi$_2$ 게이트 전극이 Thin Oxide 성질에 미치는 영향)

  • 박진성;이현우;김갑식;문종하;이은구
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.3
    • /
    • pp.259-263
    • /
    • 1998
  • WSi2/CVD-Si/SiO2/Si-substrate의 폴리사이드 구조에서 실리콘 증착 POCl3 확산 그리고 WSi2 증착 유무에 따른 Thin oxide 특성을 연구했다 WSi2 막을 증착하지 않은 CVD-Si/SiO2/Si-substrate 구조에서 CVD-Si을 po-lycrystalline-Si으로 증착한 시편이 amorphous-Si을 증착한 시편보다 산화막 불량이 적다 WSi2 를 증착시킨 WSi2/CVD-Si/SiO2./Si-substrate의 구조에서 CVD-Si의 polycrystalline-Si 혹든 amorphous-Si 의 막 증착에 따른 thin oxide의 불량율 차이는 미미하다 산화막 불량은 CVD-Si에 확산시킨 인(P) 증가 즉 면저항(sheet resistance) 감소로 증가한다. Thin oxide의 절연특성은 WSi2 증착으로 저하된다 WSi2 증착으로 산화막 두께는 증가하나 막 특성은 열등해져 산화막 절연성이 떨어진다.

  • PDF

A Novel 800mV Beta-Multiplier Reference Current Source Circuit for Low-Power Low-Voltage Mixed-Mode Systems (저전압 저전력 혼성신호 시스템 설계를 위한 800mV 기준전류원 회로의 설계)

  • Kwon, Oh-Jun;Woo, Son-Bo;Kim, Kyeong-Rok;Kwack, Kae-Dal
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.585-586
    • /
    • 2008
  • In this paper, a novel beta-multiplier reference current source circuit for the 800mV power-supply voltage is presented. In order to cope with the narrow input common-mode range of the OpAmp in the reference circuit, shunt resistive voltage divider branches were deployed. High gain OpAmp was designed to compensate intrinsic low output resistance of the MOS transistors. The proposed reference circuit was designed in a standard 0.18um CMOS process with nominal Vth of 420mV and -450mV for nMOS and pMOS transistor respectively. The total power consumption including OpAmp is less than 50uW.

  • PDF

Integration of 5-V CMOS and High-Voltage Devices for Display Driver Applications

  • Kim, Jung-Dae;Park, Mun-Yang;Kang, Jin-Yeong;Lee, Sang-Yong;Koo, Jin-Gun;Nam, Kee-Soo
    • ETRI Journal
    • /
    • v.20 no.1
    • /
    • pp.37-45
    • /
    • 1998
  • Reduced surface field lateral double-diffused MOS transistor for the driving circuits of plasma display panel and field emission display in the 120V region have been integrated for the first time into a low-voltage $1.2{\mu}m$ analog CMOS process using p-type bulk silicon. This method of integration provides an excellent way of achieving both high power and low voltage functions on the same chip; it reduces the number of mask layers double-diffused MOS transistor with a drift length of $6.0{\mu}m$ and a breakdown voltage greater than 150V was self-isolated to the low voltage CMOS ICs. The measured specific on-resistance of the lateral double-diffused MOS in $4.8m{\Omega}{\cdot}cm^2$ at a gate voltage of 5V.

  • PDF

A delay model for CMOS inverter (CMOS 인버터의 지연 시간 모델)

  • 김동욱;최태용;정병권
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.6
    • /
    • pp.11-21
    • /
    • 1997
  • The delay models for CMOS invertr presented so far predicted the delay time quite accurately whens input transition-time is very small. But the problem that the accuracy is inclined to decrease becomes apparent as input transition tiem increases. In this paper, a delay model for CMOS inverter is presented, which accuractely predicts the delay time even though input transition-time increases. To inverter must be included in modeling process because the main reason of inaccuracy as input transition tiem is the leakage current through the complementary MOS. For efficient modeling, this paper first models the MOSes with simple I-V charcteristic, with which both the pMOS and the nMOS are considered easily in calculating the inverter delay times. This resulting model needs few parameters and re-models each MOS effectively and simply evaluates output voltage to predict delay time, delay values obtained from this effectively and simply evaluates output voltage to predict delay time, delay values obtained from this model have been found to be within about 5% error rate of the SPICE results. The calculation time to predict the delay time with the model from this paper has the speed of more than 70times as fast as to the SPICE.

  • PDF