Browse > Article

A Study on the new four-quadrant MOS analog multiplier using quarter-square technique  

Kim, Won-U (Dept.of Electronics Electric Engineering, Chungang University)
Byeon, Gi-Ryang (Dept.of Electronics Electric Engineering, Chungang University)
Hwang, Ho-Jeong (Dept.of Electronics Electric Engineering, Chungang University)
Publication Information
Abstract
In this paper, a new four-quadrant MOS analog multiplier Is proposed using the quarter-square technique, which is based on the quadratic characteristics of MOS transistor operating in the saturation region and the difference operation of a source-coupled differential circuits. The proposed circuit has been fabricated in a p-well CMOS process. The multiplier achieves a total harmonic distortion of less than 1 percent for the both input ranges of 50 percent of power supply, a -3㏈ bandwidth of 30㎒ a dynamic range of 81㏈ and a power consumption of 40㎽. The active chip area is 0.54㎟. The supposed multiplier circuit is simple and adjust high frequency application because one input signal transfer output by one transistor.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. L. Geiger, P. E. Allen and N. R Strader, Degital Techniques for Analog and Digital circuits, New York: McGraw-Hill, 1990
2 K. Bult and H. Wallinga, 'A class of analog CMOS circuits based on the square-law characteristic of an MOS transistor in saturation,' IEEE J. Solid-State Circuits, Vol. SC-22, No.3, 357-365, Jun. 1987
3 A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, 'Low power CMOS digital design,' IEEE J. Solid-State Circuits, Vol. 27, pp. 473-483, Apr. 1992   DOI   ScienceOn
4 I. S. Abu-Khater, A. Bellaouar, and M. I. Elmastry, 'Circuit techniques for CMOS lowpower high-performace multipliers.' IEEE J. Solid State Circuits, Vol. 31, pp 1535-1546, Oct, 1996   DOI   ScienceOn
5 J. V. Wait et al., 'Introduction to operational amplifier theory and applications,' McGraw-Hill, New York, 1975
6 B. Gilbert, 'A precesion four-quardrant multiplier with subnanosecond respond,' IEEE J. Solid-State Circuits, Vol. SC-3, No.6, pp. 353 - 365, Dec. 1968
7 D. C. Sao and R G. Meyer, 'A four-quadrant NMOS multiplier,' IEEE J. Solid-State Circuits, Vol. SC -17, No.6, pp. 1174-1178, Dec. 1982
8 J. N. Babanezhad and G. C. Temes, 'A '2fJ-V four-quadrant CMOS analog multiplier,' IEEE J. Solid-State Circuits, Vol. SC-20, No.6, pp. 1158-1167, Dec. 1985
9 Z. Hong and H. Melchior, 'four-quadrant CMOS multiplier with resistors,' Electron. lett.' Vol. 20, No. 24, pp. 1015-1016, Nov. 1984   DOI   ScienceOn
10 J. S. Pena-Finol and J. A. Connelly, 'A MOS four-quadrant analog multiplier using the quarter-square technique,' IEEE J. Solid-State Circuits, Vol. SC-22, No.6, pp. 1064-1073, Dec. 1987
11 Z. Hong and H. Melchior, 'Analogue four-quadrant CMOS multiplier with resistors,' Electron. lett.' Vol. 21, No. 12, pp. 531-532, June. 1985   DOI
12 D. Brodarac et al., 'Novel sampled-data MOS multiplier,' Electron. lett.' Vol. 18, No.5, pp. 229-230, March 1982   DOI   ScienceOn
13 B. Gilbert, 'A high-performance monolithic multiplier using active feedback,' IEEE J. Solid-State Circuits, Vol. SC-9, No.6, pp. 364 -373, Dec. 1974
14 P. E. Allen and D. R. Holberg, 'CMOS analog circuit design,' Holt, Rinehart and Winston, New York, 1987
15 C. F. Law, S. S. Rofail, and K. S. Yeo, 'A Low-Power 16${\times}$16 -b parellel Multiplier Utilizing Pass-Transistor Logic.' IEEE J. Solid State Circuits, Vol. 34, No. 10, Oct. 1999   DOI   ScienceOn
16 S. C. Qin and R. L. Geiger, 'A${\pm}$5V CMOS analog multiplier,' IEEE J. Solid-State Circuits, Vol. SC-22, No.6, pp. 1143-1146, Dec. 1986
17 K. Bult and H. Wallinga, 'A CMOS four-quadrant analog multiplier,' IEEE J. Solid-State Circuits, Vol. SC-21, No.2, pp. 430-435, June 1986
18 J. W. Fattaruso and R. G. Meyer, 'MOS analog function synthesis,' IEEE J Solid-State Circuits, Vol. SC-22, No.6, pp. 1056-1063, Dec. 1987
19 R. S. Muller and T. Kamins, 'Device electronics for integrated circuits,' John Wiley & Sons, New York, 1977