• Title/Summary/Keyword: p-Laplacian problems

Search Result 28, Processing Time 0.024 seconds

MULTIPLE PERIODIC SOLUTIONS FOR EIGENVALUE PROBLEMS WITH A p-LAPLACIAN AND NON-SMOOTH POTENTIAL

  • Zhang, Guoqing;Liu, Sanyang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.213-221
    • /
    • 2011
  • In this paper, we establish a multiple critical points theorem for a one-parameter family of non-smooth functionals. The obtained result is then exploited to prove a multiplicity result for a class of periodic eigenvalue problems driven by the p-Laplacian and with a non-smooth potential. Under suitable assumptions, we locate an open subinterval of the eigenvalue.

MULTIPLE SOLUTIONS TO DISCRETE BOUNDARY VALUE PROBLEMS FOR THE p-LAPLACIAN WITH POTENTIAL TERMS ON FINITE GRAPHS

  • CHUNG, SOON-YEONG;PARK, JEA-HYUN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1517-1533
    • /
    • 2015
  • In this paper, we prove the existence of at least three nontrivial solutions to nonlinear discrete boundary value problems $$\{^{-{\Delta}_{p,{\omega}}u(x)+V(x){\mid}u(x){\mid}^{q-2}u(x)=f(x,u(x)),x{\in}S,}_{u(x)=0,\;x{\in}{\partial}S}$$, involving the discrete p-Laplacian on simple, nite and connected graphs $\bar{S}(S{\cup}{\partial}S,E)$ with weight ${\omega}$, where 1 < q < p < ${\infty}$. The approach is based on a suitable combine of variational and truncations methods.

INFINITELY MANY SOLUTIONS FOR (p(x), q(x))-LAPLACIAN-LIKE SYSTEMS

  • Heidari, Samira;Razani, Abdolrahman
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.51-62
    • /
    • 2021
  • Variational method has played an important role in solving problems of uniqueness and existence of the nonlinear works as well as analysis. It will also be extremely useful for researchers in all branches of natural sciences and engineers working with non-linear equations economy, optimization, game theory and medicine. Recently, the existence of infinitely many weak solutions for some non-local problems of Kirchhoff type with Dirichlet boundary condition are studied [14]. Here, a suitable method is presented to treat the elliptic partial derivative equations, especially (p(x), q(x))-Laplacian-like systems. This kind of equations are used in the study of fluid flow, diffusive transport akin to diffusion, rheology, probability, electrical networks, etc. Here, the existence of infinitely many weak solutions for some boundary value problems involving the (p(x), q(x))-Laplacian-like operators is proved. The method is based on variational methods and critical point theory.

ON PERIODIC BOUNDARY VALUE PROBLEMS OF HIGHER ORDER NONLINEAR FUNCTIONAL DIFFERENCE EQUATIONS WITH p-LAPLACIAN

  • Liu, Yuji;Liu, Xingyuan
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.29-40
    • /
    • 2009
  • Motivated by [Linear Algebra and its Appl. 420(2007), 218-227] and [Linear Algebra and its Appl. 425(2007), 171-183], we, in this paper, study the solvability of periodic boundary value problems of higher order nonlinear functional difference equations with p-Laplacian. Sufficient conditions for the existence of at least one solution of this problem are established.

BOUNDARY VALUE PROBLEMS FOR NONLINEAR PERTURBATIONS OF VECTOR P-LAPLACIAN-LIKE OPERATORS

  • Manasevich, Raul;Mawhin, Jean
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.5
    • /
    • pp.665-685
    • /
    • 2000
  • The aim of this paper is to obtain nonlinear operators in suitable spaces whise fixed point coincide with the solutions of the nonlinear boundary value problems ($\Phi$($\upsilon$'))'=f(t, u, u'), l(u, u') = 0, where l(u, u')=0 denotes the Dirichlet, Neumann or periodic boundary conditions on [0, T], $\Phi$: N N is a suitable monotone monotone homemorphism and f:[0, T] N N is a Caratheodory function. The special case where $\Phi$(u) is the vector p-Laplacian $\mid$u$\mid$p-2u with p>1, is considered, and the applications deal with asymptotically positive homeogeneous nonlinearities and the Dirichlet problem for generalized Lienard systems.

  • PDF

EXISTENCE OF A POSITIVE INFIMUM EIGENVALUE FOR THE p(x)-LAPLACIAN NEUMANN PROBLEMS WITH WEIGHTED FUNCTIONS

  • Kim, Yun-Ho
    • Korean Journal of Mathematics
    • /
    • v.22 no.3
    • /
    • pp.395-406
    • /
    • 2014
  • We study the following nonlinear problem $-div(w(x){\mid}{\nabla}u{\mid}^{p(x)-2}{\nabla}u)+{\mid}u{\mid}^{p(x)-2}u={\lambda}f(x,u)$ in ${\Omega}$ which is subject to Neumann boundary condition. Under suitable conditions on w and f, we give the existence of a positive infimum eigenvalue for the p(x)-Laplacian Neumann problem.

MULTI-POINT BOUNDARY VALUE PROBLEMS FOR ONE-DIMENSIONAL p-LAPLACIAN AT RESONANCE

  • Wang Youyu;Zhang Guosheng;Ge Weigao
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.361-372
    • /
    • 2006
  • In this paper, we consider the multi-point boundary value problems for one-dimensional p-Laplacian at resonance: $({\phi}_p(x'(t)))'=f(t,x(t),x'(t))$, subject to the boundary value conditions: ${\phi}_p(x'(0))={\sum}^{n-2}_{i=1}{\alpha}_i{\phi}_p(x'({\epsilon}i)),\;{\phi}_p(x'(1))={\sum}^{m-2}_{i=1}{\beta}_j{\phi}_p(x'({\eta}_j))$ where ${\phi}_p(s)=/s/^{p-2}s,p>1,\;{\alpha}_i(1,{\le}i{\le}n-2){\in}R,{\beta}_j(1{\le}j{\le}m-2){\in}R,0<{\epsilon}_1<{\epsilon}_2<...<{\epsilon}_{n-2}1,\;0<{\eta}1<{\eta}2<...<{\eta}_{m-2}<1$, By applying the extension of Mawhin's continuation theorem, we prove the existence of at least one solution. Our result is new.

EXISTENCE AND MULTIPLICITY OF WEAK SOLUTIONS FOR SOME p(x)-LAPLACIAN-LIKE PROBLEMS VIA VARIATIONAL METHODS

  • AFROUZI, G.A.;SHOKOOH, S.;CHUNG, N.T.
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.1_2
    • /
    • pp.11-24
    • /
    • 2017
  • Using variational methods, we study the existence and multiplicity of weak solutions for some p(x)-Laplacian-like problems. First, without assuming any asymptotic condition neither at zero nor at infinity, we prove the existence of a non-zero solution for our problem. Next, we obtain the existence of two solutions, assuming only the classical Ambrosetti-Rabinowitz condition. Finally, we present a three solutions existence result under appropriate condition on the potential F.