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EXISTENCE AND MULTIPLICITY OF WEAK SOLUTIONS

FOR SOME p(x)-LAPLACIAN-LIKE PROBLEMS VIA

VARIATIONAL METHODS

G.A. AFROUZI, S. SHOKOOH, N.T. CHUNG∗

Abstract. Using variational methods, we study the existence and mul-
tiplicity of weak solutions for some p(x)-Laplacian-like problems. First,
without assuming any asymptotic condition neither at zero nor at infinity,

we prove the existence of a non-zero solution for our problem. Next, we ob-
tain the existence of two solutions, assuming only the classical Ambrosetti-
Rabinowitz condition. Finally, we present a three solutions existence result

under appropriate condition on the potential F .
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1. Introduction

The aim of this paper is to study the following p(x)-Laplacian-like problem −div

((
1 + |∇u|p(x)√

1+|∇u|2p(x)

)
|∇u|p(x)−2∇u

)
= λf(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1)

where Ω ⊂ RN (N ≥ 2) is a bounded domain with boundary of class C1, λ is a
positive parameter, p ∈ C(Ω) with

N < p− := inf
x∈Ω

p(x) ≤ p+ := sup
x∈Ω

p(x) < +∞

and f is an L1-Carathéodory function.
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The equation  −div

(
∇u√

1+|∇u|2

)
= f(t, u) inΩ,

u|∂Ω = 0
(2)

plays, as is well known, a role in differential geometry and in the theory of rela-
tivity. Existence, non-existence and multiplicity of positive solutions of problem
(2) have been discussed by several authors in the last decades.

Obersnel and Omari in [20] studied the existence of positive solutions of the
parametric problem −div

(
∇u√

1+|∇u|2

)
= λf(t, u) inΩ,

u|∂Ω = 0,
(3)

where λ > 0, Ω ⊂ RN (N ≥ 2) is a bounded open subset with sufficiently smooth
boundary ∂Ω and f : Ω×R → R is an L1-Carathéodory function whose potential
satisfies a suitable oscillating behaviour at zero.

W. Ni and J. Serrin in [18, 19] initiated the study of ground states for equa-
tions of the form

−div

(
∇u√

1 + |∇u|2

)
= f(u) in RN , (4)

with very general right hand side f . Radial solutions of the problem (4) have
been studied in the context of the analysis of capillary surfaces for a function f
of the form f(u) = ku, for k > 0 (for more details see [10, 13]).

Recently, the study of various mathematical problems with variable exponent
growth condition has received considerable attention in recent years; see e.g.
[2, 7, 14, 15, 23].

M. Rodrigues in [23] established the existence of non-trivial solutions for prob-
lem (1) by using Mountain Pass lemma (see [9]) and Fountain theorem (see
Theorem 3.6 in [24]). The results were extended by G. Bin in [3], where the
Ambrosetti-Rabinowitz type condition did not hold. Some further results on
this type of problems can be found in the papers [17, 22].

In this paper, at first, we prove the existence of a non-zero solution for problem
(1) without assuming any asymptotic condition neither at zero nor at infinity
(see Theorem 3.1). Next, assuming only the classical Ambrosetti-Rabinowitz
condition, we obtain the existence of two solutions (see Theorems 3.2 and 3.4).
Finally, we present a three solutions existence result under appropriate condition
on the potential F (see Theorem 3.5).

Our main tools are Bonanno critical point theorems contained in [5] and [8],
which are powerful analytic tools for multiplicity results in nonlinear problems
with a variational structure. In the next section, we recall this theorems for the
reader’s convenience.



Some p(x)-Laplacian-like problems 13

The paper is organized as follows. In Section 2, we recall some properties
of variable exponent spaces and our main tools. In Section 3, we discuss the
existence of one, two and three weak solutions for the problem (1).

2. Preliminaries

In this section, we recall definitions and theorems which will be used in this
paper.

Definition 2.1. Let (X, ∥ · ∥) be a real Banach space and J, I : X → R be
two continuously Gâteaux differentiable functionals; put g = J − I and fix
r1, r2 ∈ [−∞,+∞], with r1 < r2. We say that the functional g satisfies the
Palais-Smale condition cut off lower at r1 and upper at r2 (

[r1](PS)[r2]−condition)
if any sequence {un} ⊂ X such that

• {g(un)} is bounded,
• limn→+∞ ∥g′(un)∥X∗ = 0,
• r1 < J(un) < r2, ∀n ∈ N,

has a convergent subsequence. If r1 = −∞ and r2 = +∞, it coincides with
the classical (PS)-condition, while if r1 = −∞ and r2 ∈ R it is denoted by
(PS)[r2]-condition.

First, we recall a result of local minimum obtained in [5], which is based on
[4, Theorem 5.1].

Theorem 2.2 ([5]). Let X be a real Banach space, let J, I : X → R be two
continuously Gâteaux differentiable functionals such that infX J = J(0) = I(0) =
0. Assume that there exist r ∈ R and ū ∈ X, with 0 < J(ū) < r, such that

supu∈J−1(]−∞,r[ I(u)

r
<
I(ū)

J(ū)
(5)

and, for each λ ∈ Λ :=

]
J(ū)
I(ū) ,

r
supu∈J−1(]−∞,r[) I(u)

[
the functional Tλ := J − λI

satisfies the (PS)[r]-condition. Then, for each λ ∈ Λ, there is uλ ∈ J−1(]0, r[)
(hence, uλ ̸= 0) such that Tλ(uλ) ≤ Tλ(u) for all u ∈ J−1(]0, r[) and T ′

λ(uλ) = 0.

Now we point out another result, which ensures the existence of at least three
critical points, that has been obtained in [8] and it is a more precise version of
[6, Theorem 3.2].

Theorem 2.3 ([8]). Let X be a reflexive real Banach space, let J : X → R
be a continuously Gâteaux differentiable, coercive and sequentially weakly lower
semi-continuous functional whose Gâteaux derivative admits a continuous in-
verse on X∗, I : X → R be a continuously Gâteaux differentiable functional
whose Gâteaux derivative is compact, moreover

J(0) = I(0) = 0.

Assume that there exist r ∈ R and ū ∈ X, with 0 < r < J(ū), such that
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(i)
supu∈J−1(]−∞,r[) I(u)

r < I(ū)
J(ū) ,

(ii) for each λ ∈ Λ :=

]
J(ū)
I(ū) ,

r
supu∈J−1(]−∞,r[) I(u)

[
the functional Tλ = J −λI

is coercive.

Then, for each λ ∈ Λ, the functional Tλ has at least three distinct critical points
in X.

Let us introduce some notation which will be used later. Here and in the
sequel, we suppose that p ∈ C(Ω) satisfies the following condition:

N < p− := inf
x∈Ω

p(x) ≤ p+ := sup
x∈Ω

p(x) < +∞. (6)

Define the variable exponent Lebesgue space Lp(x)(Ω) by

Lp(x)(Ω) :=

{
u : Ω → R measurable and

∫
Ω

∣∣∣u(x)∣∣∣p(x) dx <∞
}
.

We define a norm, the so-called Luxemburg norm, on this space by the formula

∥u∥Lp(x)(Ω) = |u|p(x) := inf

{
λ > 0 :

∫
Ω

∣∣∣u(x)
λ

∣∣∣p(x) dx ≤ 1

}
.

Define the Sobolev space with variable exponent

W 1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}
equipped with the norm

∥u∥1,p(x) := |u|p(x) + |∇u|p(x).

It is well known [12] that, in view of (6), both Lp(x)(Ω) andW 1,p(x)(Ω), with the
respective norms, are separable, reflexive and uniformly convex Banach spaces.

We denote by W
1,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(x)(Ω). For any u ∈ X,

define ∥u∥ = |∇u|p(x). It is easy to see that W
1,p(x)
0 (Ω) endowed with the

above norm is a separable, reflexive Banach space. In W
1,p(x)
0 (Ω) the Poncarè

inequality holds, so |∇u|p(x) is an equivalent norm in W
1,p(x)
0 (Ω).

Proposition 2.4 ([12]). Set ρ(u) =
∫
Ω
|u|p(x) dx. For u, un ∈ Lp(·)(Ω), we have

(1) |u|p(·) < (=;>)1 ⇔ ρ(u) < (=;>)1,

(2) |u|p(·) > 1 ⇒ |u|p
−

p(·) ≤ ρ(u) ≤ |u|p
+

p(·),

(3) |u|p(·) < 1 ⇒ |u|p
+

p(·) ≤ ρ(u) ≤ |u|p
−

p(·),

(4) |un|p(·) → 0 ⇔ ρ(un) → 0,
(5) |un|p(·) → ∞ ⇔ ρ(un) → ∞.

From Proposition 2.4, for u ∈ Lp(·)(Ω) the following inequalities hold:

∥u∥p
−
≤
∫
Ω

|∇u(x)|p(x) dx ≤ ∥u∥p
+

if ∥u∥ > 1; (7)
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∥u∥p
+

≤
∫
Ω

|∇u(x)|p(x) dx ≤ ∥u∥p
−

if ∥u∥ < 1. (8)

Proposition 2.5 ([16]). If Ω ⊂ RN is a bounded domain, then the embedding

we deduce that W
1,p(x)
0 (Ω) ↪→ C0(Ω) is compact whenever N < p−.

From Proposition 2.5, there exists a positive constant m depending on p(·), N
and Ω such that

∥u∥∞ = sup
x∈Ω

|u(x)| ≤ m∥u∥, ∀u ∈W
1,p(x)
0 (Ω). (9)

Put

J(u) :=

∫
Ω

(
1

p(x)
|∇u|p(x) +

√
1 + |∇u|2p(x)

p(x)

)
dx, ∀u ∈W

1,p(x)
0 (Ω).

It is known that J ∈ C1(W
1,p(x)
0 (Ω),R) and

J ′(u)(v) =

∫
Ω

(
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1 + |∇u|2p(x)

)
∇v dx, ∀u, v ∈W

1,p(x)
0 (Ω).

Moreover, we have J is convex, sequentially weakly lower semi-continuous and

J ′ :W
1,p(x)
0 (Ω) → (W

1,p(x)
0 (Ω))∗ is an homeomorphism, see [23].

Set

F (x, t) :=

∫ t

0

f(x, ξ) dξ

for all x ∈ Ω and t ∈ R. For each u ∈ W
1,p(x)
0 (Ω), we let the functional

I :W
1,p(x)
0 (Ω) → R be defined by

I(u) :=

∫
Ω

F (x, u(x)) dx.

Proposition 2.5 guarantees that the functional I is well defined, continuously
Gâteaux differentiable with compact derivative and whose Gâteaux derivative is
given by

I ′(u)(v) =

∫
Ω

f(x, u(x))v(x) dx

for any u, v ∈W
1,p(x)
0 (Ω).

Now, let us introduce the energy functional Tλ related to problem (1)

Tλ(·) := J(·)− λI(·)

and we observe that, for each λ > 0, the critical points u of Tλ are the weak
solutions of (1), i.e.,∫

Ω

(
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1 + |∇u|2p(x)

)
∇v dx− λ

∫
Ω

f(x, u(x))v(x) dx = 0

for all v ∈W
1,p(x)
0 (Ω).
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3. Main results

Before introducing our result we observe that, setting

ϱ(x) = sup{ς > 0 : B(x, ς) ⊆ Ω}

for all x ∈ Ω, one can prove that there exists x0 ∈ Ω such that B(x0, γ) ⊆ Ω,
where

γ = sup
x∈Ω

ϱ(x). (10)

Fixed r > 0, we also denote by

ωr := rN
π

N
2

N
2 Γ(

N
2 )
,

the measure of the N -dimensional ball of radius r where Γ is the Gamma func-
tion. Put

β+ := 2p
+−N+1ωNγ

N−p+

(2N − 1) + |Ω|, (11)

where |Ω| denotes the Lebesgue measure of the set Ω, and

β◦ := 2p
−−NωNγ

N−p−
(2N − 1). (12)

Now, we present our main results. First, we establish the existence of one non-
trivial solution for problem (1).

Theorem 3.1. Let f : Ω × R → R be an L1-Carathéodory function. Assume

that there exist c ≥ m and d ≥ max{1, γ} with β+d
p+

< p−

p+

(
c
m

)p−

such that∫
Ω

max
|t|≤c

F (x, t) dx(
c
m

)p− <

p−
∫
Ω

F (x, d) dx

p+β+dp
+ . (13)

Then, for each

λ ∈ Λ :=

 β+d
p+

p−
∫
Ω

F (x, d) dx

,

(
c
m

)p−

p+
∫
Ω

max
|t|≤c

F (x, t) dx

 , (14)

problem (1) admits at least one non-trivial weak solution ū1 ∈ W
1,p(x)
0 (Ω) such

that

max
x∈Ω

|ū1(x)| < c.

Proof. Our aim is to apply Theorem 2.2 to problem (1) to the space X :=

W
1,p(x)
0 (Ω) with the usual norm and to the functionals J, I : X → R defined as

J(u) :=

∫
Ω

(
1

p(x)
|∇u|p(x) +

√
1 + |∇u|2p(x)

p(x)

)
dx,
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and

I(u) :=

∫
Ω

F (x, u(x)) dx

for all u ∈ X.
The functional J, I ∈ C1(X,R), as it was said in the previous section. This

ensures that the functional Tλ = J − λI satisfies the (PS)[r]-condition for all
r > 0 (see [4, Proposition 2.1]). Define

w(x) :=


0 if x ∈ Ω \B(x0, γ),
d if x ∈ B(x0,

γ
2 ),

2d
γ (γ − |x− x0|) if x ∈ B(x0, γ) \B(x0,

γ
2 ),

where | · | denotes the Euclidean norm on RN . Put

r :=
1

p+
( c
m

)p−

.

Clearly, w ∈ X, and from the condition β+d
p+

< p−

p+

(
c
m

)p−

one has

J(w) =

∫
Ω

1

p(x)

(
|∇w|p(x) +

√
1 + |∇w|2p(x)

)
dx

≤ 2

p−

∫
B(x0,γ)\B(x0,

γ
2 )

|∇w|p(x) dx+
1

p−
|Ω|

≤ 1

p−
2p

+−N+1(2N − 1)γN−p+

ωNd
p+

+
1

p−
|Ω|dp

+

=
1

p−
β+d

p+

< r.

For all u ∈ X with J(u) < r, owing to (7) and (8), definitively one has

min{∥u∥p
+

, ∥u∥p
−
} < rp+.

Then

∥u∥ < max{(rp+)
1

p+ , (rp+)
1

p− } =
c

m
,

and so by (9),

max
x∈Ω

|u(x)| ≤ m∥u∥ < c.

Therefore,

supu∈J−1(]−∞,r[) I(u)

r
≤

∫
Ω

max
|t|≤c

F (x, t) dx

1
p+

(
c
m

)p− .

So, by the assumption (13), the condition (5) of Theorem 2.2 is verified. Hence,
all the assumptions of Theorem 2.2 are satisfied, and it follows that for each

λ ∈ Λ ⊆
]
J(w)

I(w)
,

r

supu∈J−1(]−∞,r[) I(u)

[
,
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the functional Tλ has at least one non-zero critical point ū1 ∈ X such that
maxx∈Ω |ū1(x)| < c that is a non-trivial weak solution of problem (1). �

The following result, in which the global Ambrosetti-Rabinowitz condition is
also used, ensures the existence of at least two non-trivial weak solutions for
problem (1).

Theorem 3.2. Assume that all the assumptions of Theorem 3.1 hold. Further-
more, suppose that f(·, 0) ̸= 0 in Ω and

(AR) there exist two positive constants µ > 2p+ and R > 0 such that for all
x ∈ Ω and |s| ≥ R,

0 < µF (x, s) ≤ sf(x, s).

Then, for each λ ∈ Λ, where Λ is given by (14), problem (1) has at least two
non-trivial weak solutions ū1, ū2 ∈ X such that

max
x∈Ω

|ū1(x)| < c.

Proof. Fix λ as in the conclusion. Theorem 3.1 ensures that problem (1) admits
at least one non-trivial weak solution ū1 which is a local minimum of the func-
tional Tλ. Now, we prove the existence of the second local minimum distinct
from the first one. To this end, we must prove that the functional Tλ satisfies the
hypotheses of the mountain pass theorem. Clearly, the functional Tλ is of class
C1 and Tλ(0) = 0. We can assume that ū1 is a strict local minimum for Tλ in
X. Therefore, there is ρ > 0 such that inf∥u−ū1∥=ρ Tλ(u) > Tλ(ū1), so condition
[21, (I1), Theorem 2.2] is verified. From (AR), by standard computations, there
is a positive constant C such that

F (x, s) ≥ C|s|µ (15)

for all x ∈ Ω and |s| > R. In fact, putting θ(x) = min|ξ|=R F (x, ξ) and

ϕs(t) = F (x, ts), ∀t > 0, (16)

by (AR), for every x ∈ Ω and |s| > R, one has

0 < µϕs(t) = µF (x, ts) ≤ tsf(x, ts) = tϕ′s(t), ∀t > 0.

Therefore, ∫ 1

R/|s|

ϕ′s(t)

ϕs(t)
dt ≥

∫ 1

R/|s|

µ

t
dt.

Then

ϕs(1) ≥ ϕs

(
R

|s|

)
|s|µ.

By (16), we obtain

F (x, s) ≥ F

(
x,
R

|s|
s

)
|s|µ ≥ θ(x)|s|µ ≥ C|s|µ, (17)
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and (15) is proved. Now, by choosing any u ∈ X \{0} and t > 1, one has

Tλ(tu) = (J − λI)(tu)

=

∫
Ω

1

p(x)

(
tp(x)|∇u|p(x) +

√
1 + t2p(x)|∇u|2p(x)

)
dx−

∫
Ω

f(x, tu(x)) dx

≤ tp
+

∫
Ω

1

p(x)

(
2tp(x)|∇u|p(x) + 1

)
dx− ctµλ

∫
Ω

|u(x)|µ dx→ −∞

as t → ∞, since µ > 2p+. So, condition [21, (I2), Theorem 2.2] is verified.
Therefore, Tλ satisfies the geometry of mountain pass.

Now, let {un} be a Palais-Smale sequence for the functional Tλ in X; i.e.,

Tλ(un) → c̄ <∞ and T ′
λ(un) → 0 in X∗ as n→ ∞, (18)

where X∗ is the dual space of X. Let us show that {un} is bounded in X. We
have

µTλ(un)− ∥T ′
λ(un)∥X∗∥un∥

≥ µTλ(un)− T ′
λ(un)(un)

= µJ(un)− λµI(un)− J ′(un)(un) + λI ′(un)(un)

≥ µ

∫
Ω

1

p(x)
|∇un|p(x) − λ

∫
Ω

(
µF (x, un)− f(x, un)un(x)

)
dx

− 2

∫
Ω

|∇un|p(x)dx

≥
(
µ

p+
− 2

)
∥un∥p

−
− λ

∫
Ω

(
µF (x, un)− f(x, un)un(x)

)
dx

≥
(
µ

p+
− 2

)
∥un∥p

−
.

Since µ > 2p+, from the above inequality we know that {un} is bounded in X.
Hence, the classical theorem of Ambrosettti and Rabinowitz ensures a critical
point ū2 of Tλ such Tλ(ū2) > Tλ(ū1). So, since f(·, 0) ̸= 0 in Ω, ū1 and ū2
are two distinct non-trivial weak solutions of the problem (1) and the proof is
complete. �

Here we give the following result as a direct consequence of Theorem 3.2 in
the autonomous case.

Theorem 3.3. Let f : R → R be a continuous function. Put F (t) :=

∫ t

0

f(ξ) dξ

for all t ∈ R. Under the following conditions

(i) there exist d ≥ max{1, γ} and c ≥ m with β+d
p+

< p−

p+

(
c
m

)p−

, such that

max|t|≤c F (t)(
c
m

)p− <
p−F (d)

p+β+dp
+ ;
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(ii) there exist two positive constants µ > 2p+ and R > 0 such that for all
|s| ≥ R,

0 < µF (s) ≤ sf(s),

and for each

λ ∈ Λ :=

 β+d
p+

p−|Ω|F (d)
,

(
c
m

)p−

p+|Ω|max|t|≤c F (t)

 ,
the problem −div

((
1 + |∇u|p(x)√

1+|∇u|2p(x)

)
|∇u|p(x)−2∇u

)
= λf(u), x ∈ Ω,

u = 0, x ∈ ∂Ω

admits at least two non-trivial weak solutions ū1, ū2 ∈ X such that

max
x∈Ω

|ū1(x)| < c.

Now, we point out the following result of three weak solutions.

Theorem 3.4. Let f : Ω× R → R be an L1-Carathéodory function satisfying

(f1) there exist a1, a2 ∈ [0,+∞[ and q ∈ C(Ω) with 1 < q(x) < p− for each
x ∈ Ω, such that

|f(x, t)| ≤ a1 + a2|t|q(x)−1

for each (x, t) ∈ Ω× R,
and f(·, 0) ̸= 0 in Ω. Assume that there exist d ≥ γ and c ≥ m with β◦dp

−
>(

c
m

)p−

, such that the assumption (13) in Theorem 3.1 holds. Then for each
λ ∈ Λ, where Λ is given by (14), problem (1) has at least three non-trivial weak
solutions.

Proof. Our goal is to apply Theorem 2.3. The functionals w, I and J defined
in the proof of Theorem 3.1 satisfy all regularity assumptions requested in the
Theorem 2.3. So, our aim is to verify (i) and (ii). Arguing as in the proof of

Theorem 3.1, put r := 1
p+

(
c
m

)p−

one has

J(w) =

∫
Ω

1

p(x)

(
|∇w|p(x) +

√
1 + |∇w|2p(x)

)
dx

≥ 1

p+

∫
Ω

|∇w|p(x) dx

≥ 1

p+
2p

−−N (2N − 1)γN−p−
ωNd

p−

=
1

p+
β◦dp

−
> r > 0.

Therefore, the assumption (i) of Theorem 2.3 is satisfied.
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Now, we prove that the functional Tλ = J − λI is coercive for all λ > 0. By
using Hölder inequality and condition (f1), for all u ∈ X such that ∥u∥ ≥ 1, we
have

I(u) =

∫
Ω

F (x, u(x)) dx

=

∫
Ω

(∫ u(x)

0

f(x, t)dt
)
dx

≤
∫
Ω

(
a1|u(x)|+

a2
q(x)

|u(x)|q(x)
)
dx

≤ a1∥u∥L1(Ω) +
a2
q−

∫
Ω

|u(x)|q(x) dx.

On the other hand, there is a constant C ′ = max{kq+q , kq
−

q } > 0 such that∫
Ω

|u(x)|q(x) dx ≤ max
{
∥u∥q

+

Lq(x)(Ω)
, ∥u∥q

−

Lq(x)(Ω)

}
≤ C ′∥u∥q

+

,

where kq is the best constant of the embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω) (see
[11]). Then

I(u) ≤ a1k1∥u∥+
a2
q+
C ′∥u∥q

+

for all u ∈ X such that ∥u∥ ≥ 1, where k1 is the best constant of the embedding

W
1,p(x)
0 ↪→ L1(Ω). Take (7) into account, one has

J(u) =

∫
Ω

1

p(x)

(
|∇u|p(x) +

√
1 + |∇u|2p(x)

)
dx

≥ 1

p+

∫
Ω

|∇u|p(x) dx

≥ 1

p+
∥u∥p

−
,

for every λ > 0, we have

Tλ(u) ≥
1

p+
∥u∥p

−
− λa1k1∥u∥ −

λa2C
′

q−
∥u∥q

+

.

Since p− > q+, the functional Tλ is coercive. Then also condition (ii) holds. So,
for each λ ∈ Λ, the functional Tλ admits at least three distinct critical points
that are weak solutions of problem (1). �

Remark 3.1. If we assume that f : Ω×R → R is a non-negative L1-Carathéodory
function, then the previous theorems guarantee the existence of non-negative
weak solutions. In fact, let ū ∈ X be one (non-trivial) weak solution of problem
(1). Arguing by contradiction, if we assume that ū is negative at a point of Ω,
the set

Ω− := {x ∈ Ω : ū(x) < 0},
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is non-empty and open. Moreover, let us consider v̄ := min{ū, 0}, one has v̄ ∈ X.
Taking into account that ū is a weak solution and by choosing v = v̄, we deduce∫

Ω−

(
|∇ū|p(x) + |∇ū|2p(x)√

1 + |∇ū|2p(x)

)
dx = λ

∫
Ω−

f(x, ū(x))ū(x) dx ≤ 0,

that is, ∥u∥W 1,p(x)(Ω−) = 0 which is absurd. Hence, our claim is proved.

As an example, we state here the following special case of our results.

Theorem 3.5. Let p(x) = p > N for every x ∈ Ω and f : R → R be a non-

negative continuous function. Put F (t) :=
∫ t

0
f(ξ) dξ for each t ∈ R. Assume

that F (d) > 0 for some d ≥ γ and, moreover,

lim inf
ξ→0

F (ξ)

ξp
= lim sup

|ξ|→+∞

F (ξ)

ξp
= 0.

Then, there is λ⋆ > 0 such that for each λ > λ⋆ the problem −div

((
1 + |∇u|p√

1+|∇u|2p

)
|∇u|p−2∇u

)
= λf(u), x ∈ Ω,

u = 0, x ∈ ∂Ω

admits at least three non-negative weak solutions.

Proof. Fix λ > λ∗ :=
β◦dp

pF (d)|Ω|
for some d ≥ γ such that F (d) > 0. Since

lim inf
ξ→0+

F (ξ)

ξp
= 0,

there is a sequence {cn} ⊂]0,+∞[ such that limn→+∞ cn = 0 and

lim
n→+∞

F (cn)

cpn
= 0.

Therefore, there exists c ≥ m such that

F (c)

cp
< min

{
F (d)

(md)pβ◦ ,
1

p|Ω|mpλ

}
and c < md(β◦)1/p. Also, by the assumption

lim sup
|ξ|→+∞

F (ξ)

ξp
= 0,

the functional Tλ is coercive. Hence, by taking Remark 3.1 into account, the
conclusion follows from Theorem 3.4. �
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