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ON PERIODIC BOUNDARY VALUE PROBLEMS
OF HIGHER ORDER NONLINEAR FUNCTIONAL
DIFFERENCE EQUATIONS WITH p-LAPLACIAN

Yui Liv AND XINGYUAN L1U

ABSTRACT. Motivated by [Linear Algebra and its Appl. 420 (2007}, 218~
227] and [Linear Algebra and its Appl. 425 (2007), 171-183], we, in this
paper, study the solvability of periodic boundary value problems of higher
order nonlinear functional difference equations with p-Laplacian. Suffi-
cient conditions for the existence of at least one solution of this problem
are established.

1. Introduction

Nonlinear difference equations of order greater than one, that is higher or-
der dynamic systems, are of paramount importance in applications where the
(n +1)°* generation (or state) of the system depends on the previous k gener-
ations {or state). Such equations also appear naturally as discrete analogues
and as numerical solutions of differential and delay differential equations which
model various diverse phenomena in biology, ecology, physiology, physics, en-
gineering and economics. We refer the readers to text book [1, 2, 11] and
the references cited there. The difference equations which result from various
discrete analogue of differential equations are of the form

y?’H—l _yn+f(nvyn7yn~17"'7yﬁ—~k) :07 n:0717""

There are large amount of papers discussed the properties, such as permanence,
global stability and oscillation properties, of above mentioned equation.

Recently, Ji and Yang [8, 9, 10] studied the eigenvalue problems for boundary
value problems of the second order difference equations

Alrio1Ayimr) —biys + Ay =0, 1 <6<, yo — TY1 = Yns1 — 0Yn = 0,
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where 7,4 € [0,1] with 7+ 6 # 2 or 7 + 6 = 2. The focuses in these papers
are the structure of their eigenvalues and comparisons of all eigenvalues as the
coefficients a;, b;, r; change.

In this paper, we study the boundary value problems consisting of the higher
order nonlinear functional difference equation with p-Laplacian
(1)
Alp(n)¢(Az(n))] = f(n, z(n+1),z(n—11(n)),...,2(n—Tm(n)), ne[0,T-1],

and the following boundary conditions
z(0) ==(T), Az(0) = Az(T),

(2) z(i) = (), i€ [-7,-1],
z(i) = (@), i€ [T+2,T+0],

where p(n) is a positive sequence with p(0) = p(T), ¢ : R — R a homeo-
morphism satisfying ¢(ab) = ¢(a)@(b) for all a > 0,b > 0 and ¢(z)xr > 0 for
all z € R. The inverse function of ¢ is defined by ¢~!, 7 : [0,7 — 1] — N,
i=1,...,m, sequences with T" > 1, -, % sequences, and

= 0 ; ci=1,..., )
T max{ , nel[gﬁwabill{O,Tz(n)} ? m}

d = —mi i I3 = 1, ey )
min {0, nef&}}l_l]{o,’r (n)}: ¢ m}

f(n,u) continuous about v = (xg,...,Tm) for each n. [a,b] = {a,...,b} if
a<band [a,b] =D ifa>b.

Boundary conditions (2) are called the periodic boundary conditions, one
may see text books [1, 2] and papers [3, 4, 8, 9, 10, 12, 13, 14, 15] and the
references therein. The motivation of this paper is due to papers [4, 5, 6, 11].

In [6], Cabada and Otero-Espinar established the existence and comparison
results for difference ¢-Laplacian boundary value problems consisting of the
equation

(3) —Alp(Az(k))] = f(k,z(k + 1)), ke {0,1,...,N —1},
and one of the following boundary conditions

(4) Az(0) = Ny, Az(N) = Ny,

and

(5) z(0) — z(N) = Cp, Az(0) — Az(N) = C,.

The methods used in papers [5, 6] and the reference cited there are lower and
upper solutions methods and monotone iterative technique and comparison
principles. In [6], in order to obtain the solutions of above mentioned problems,
the following assumptions are used.

(H1). ¢ : R — R is a strictly increasing homeomorphism and ¢~! is a
H-Lipschitzian function on R; i.e.,

|6~ (z) — ¢~ ()| < Hlz —yl, z,y €R.
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(H}). ¢ : R — R is a strictly increasing homeomorphism and ¢~! is a
locally H-Lipschitzian function on R; i.e., for every compact interval [hi, ho]
there exists H > 0 such that for all z,y € [hy, ha]

67 (2) = ¢ ()| < Hlz —yl.

(Hs). Suppose that a and 38 are lower and upper solutions of problem (3)
and (4), see the definition in [6], respectively. There exists M < 0 for which

f(hk,2)~f(k,y) < M(y—a), for all B(k) <y <z < a(k), k€ I=[0,...,N~1].
In paper [4], the authors investigated the boundary value problem

{ —A(p(n — 1)Ay(n — 1)) + g(n)y(n) = f(n,y(n)), ne[L,N],
y(1) = y(N + 1), p(1)Ay(1) = p(N + 1)Ay(N + 1),

by using a fixed point theorem in cones in Banach space, the existence results
for positive solutions of above problem were established. Above boundary value
problem can be rewritten as follows

{ A(p(n)Ay(n)) = gn+ Dy(n+1) - f(n+ 1, y(n+1)), n€0,N 1],
y(0) = y(N), p(0)Ay(0) = p(N)Ay(N).

It is easy to see that this kind of problem is a special case of boundary value
problem (1) and (2) (BVP (1) and (2) for short) in the case where ¢(z) = «
and f(n,zo,1,...,2m) in (1) is replaced by g(n + 1)zo — f(n + 1, 0).

We find that there is no paper discussed the existence of solutions of BVP
(1) and (2).

The purposes of this paper are to establish sufficient conditions for the ex-
istence of at least one solution of BVP (1) and (2) by using coincidence degree
theory. It is interesting that we allow that f to be sublinear, at most linear or
superlinear.

This paper is organized as follows. In Section 2, we give the main results,
and in Section 3, an example to illustrate the main results will be presented.

2. Main results

To get existence results for solutions of BVP (1) and (2), we need the follow-
ing fixed point theorem, which was used to solve multi-point boundary value
problems for differential equations in many papers but was not used to solve
boundary value problems for difference equations.

Lemma 2.1 ([12]). Let X andY be Banach spaces. Suppose L : D(L) C X —
Y is a Fredholm operator of index zero with KerL = {0}, N1,No: X — Y s
L-compact on any open bounded subset of X. If Q is an open bounded subset,
and Lx = Nax has a solution in Q C X and

Lz # ANz + (1 — \)Nax for all z € D(L) N 0Q and X € [0,1],

then there is at least one x € ) so that Lr = Niz.
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Choose X = RT+7+6+1 « RT+1 3nd let X be endowed with the norm

||($}y)|¥x=maX{ max |a(n)], maley(n)l}

n€[—7,T+6] nel[l,T+1
for (z,y) € X. Choose Y = RT*! x RT x R? and let Y be endowed with the

norm

(v, w)lly = max {ngl[gg] u(wl, max  po(n), max sw(nn}

for (u,v,w) € Y. It is easy to see that X and Y are real Banach spaces. Choose
z(t) =0,i € [~7,...,-1],

(*) DomL={(z,y)€X: z(4d)€R, i€[0,T+1], x RTHL.
(@) =0, i€[T+2,...,T+4],

Let (z,y) € Dom LN X, define L : Dom LN X — Y, and

Az(n), n=0,...,T
z\ _ | Ay(n),n=0,...,T-1
1(3)- “(D) ’
Y

and let (z,y) € Dom LN X, define Ny : X — kay

w(3)

! (‘;’;(%% 5 n=0,...,T
= | fln,w(n+1),win—n(n),...,wln—1,n)), n=0,...,7—1

x(0)

y(0)

and No: X — Y by

VT + 1
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for all (z,y) € X, where w(n} = z(n) + zo(n) and

7(“)7 ne [_T> "1}7
(**) $0(’ﬂ) = 0, ne {OvT + 1}’
Y(n), ne[T+2,T+44).
It is easy to check the following results.
(i) KerL={0€ X}.
(ii) L is a Fredholm operator of index zero.
(iii) Let Q C X be an open bounded subset with QN DomL # (. Then Ny
and Ny are L-compact on Q.
(iv) Let £ be an open bounded nonempty subset of X. Then Lz = Nox
has a solution in 2 C X.
(v) If (z,y) € X is a solution of L(z,y) = Ni(z,y), then -+ is a solution
of BVP(1) and (2).
(vi) If y(n) = p(n)¢(Az(n)) for n=0,...,T, since p(0) = p(T), it is easy
to see that z(0) = z(T),z(1) = (T +1) if and only if z(0) = 2(T),y(0) = y(T).

Theorem L. Suppose that there exist numbers 3 > 0, 6 > 1, nonnegative se-

quences p;(n),r(n)(i = 0,...,m), functions g(n,zg,...,Tm), h(n,To,...,Tm)
such that f(n,zo,...,Zm) = g(n,zo,...,Tm) + h(n,Zo,...,Tm) and

9(n, 0,1, ..., Tm)T0 > Blao|*H,
and

h{n,zo,...,2n)| < sz Neil® +r(n),

foralln€{1,...,T}, (o, Z1,...,2m) € Rm“. Then BVP (1) and (2) has at
least one solution if
e m
(6) llpolt + 77 Y [|pill < 6.
o]

Proof. Let 1 = {{x,y) : L(z,y) = AN1(z,y) + (1 — A)Na(z,y), (&, y), ) €
[DomlL] x {0,1)}, we prove that £; is bounded.

For (z,y) € O, we have L(z,y) = AN1(z,y) + (1 — A)Nao(z, y), A € [0,1], s0
(7)

Az(n) = A¢~! (M) yn=0,...,T,

»(n)
Ay(n) = AM(n,w(n + 1), w(n—71(n)),...,wn—7nn))),n=0,...,T—1,
#(T) = (0),

y(T) = y(0).
It follows, forn=0,...,T — 1, that
Alp(n)¢(Aw(n))jw(n + 1)

= Ap(\) f(n,w(n + 1), w(n — 1i(n)),...,w(n — rm(n))wn + 1).
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Since y(0) = y(T') and z(0) = z(T) imply that z(0) = =(T),z(1) = (T + 1),
it is easy to see from the definition of w(n) = z(n) + z¢(n), and (**) that
w(T) = w(0) and w(T + 1) = w(1), then

T-1

> Alp(n)g(Aw(n))]w(n + 1)

n=0
T-1

= ) _[p(n+ 1)¢(Aw(n + 1)) — p(n)¢(Aw(n))|[w(n + 2) — Aw(n + 1)]
n=0
T-1 ’

= 3 Ip(n + D¢(Aw(n + D)w(n + 2) — p(r)$(Aw(n))w(n + 1)]
n=0

= p(n+1)¢(Aw(n + 1)) Aw(n + 1)

n=0

= p(T)$(Aw(T))w(T + 1) — p(0)(Aw(0))w(1)
T-1

= p(n+ Dd(Aw(n + 1))Aw(n + 1)
n=0
= p(0) (HAw(D)w(T +1) - $(Auw(O)u(1) )

= " p(n+ Dd(Aw(n + 1)) Aw(n + 1)

n=0
T-1

= = > p(n+ Dp(Aw(n + 1)) Aw(n + 1).

n=0
Since ¢(z)z > 0 for all z € R and p(n) > 0 for all n € Z, we get

T-1

3" Alp(n)d(Aw(n)lw(n +1) < 0.

n=0
So, we get

T—1
Y fn,w(n+1),w(n — 1 (n)),...,wn ~ Tm(n))w(n + 1) <0.

It follows that
T-1
B lw(n+1))°+
y
< Z g(n,w(n + 1), w(n — 1(n)),..., wn — 7m(n))w(n + 1)

n=0
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T-1
< - z h(n,w(n + 1),w(n — 11(n)),...,w(n — Tm(n))win + 1)
T-1
< Z (n, w(n + 1), w(n — 11(n)),..., wn — 7m(n))| [w(n + 1)

IA

Zpo Yw(n + 1))+

m T-—1

+Y > pimhw(n - 7(n)*lw(n +1)|+Z (n)lw(n + 1)]
t=1 n=0 n==0
T-1

< flpoll 3 hw(n + 1)}

n=0
T-1

+ Z (| Z fw(n — 7i(n) [’ fw(n + 1| + |Ir]| Z [w(n +1)|

=1

For z; 2 0,y; > 0, Hcrlder s inequality iraplies

s s l/p s 1/(1
> iy < (Zd’) (Zzﬁ’) , 1p+1/g=1, ¢>0,p>0.
i=1 i==1 i=1

It follows that

-1 T-1 7
3l + 1) < TP (Z lw(n + 1)|9+1>
== n=0)

and

Z}w n —7i(n)|jw(n + 1)

1

< (Z |w(n — %(n))l(”l) (2—: fw(n + 1)19“)

n=0
Then
T-1

By lwin+ 1)+

n=0

T-1 ” T-1
< llpoll Y lw(n + 1) + [jr|| T (Z w(n + I)I(’“)
n=0

841

n=0

+ZII%I|(ZI'¢U n—7i( I&“) (ilw(nH)I”l)

()
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T-1 T—1 6+
= llpoll Y ho(n + 1)+ + ||| (Z fw(n + 1)[‘9“)

n=0 n=0

o 1

+ Z [lpil| ( > Jw(u + 1)|9+1> (Z lw(n + 1)l0+1)
i=1 T-1}

uwe{n—7;(n)—1: n=0,....,T—

T-1 . T-1 m
<lpoll Y lw(n + 1)+ + ||r||T 7+ (Z lw(n + 1)|"“)

n=0 n=0

0
T+6 o+
+ T Z Al (Z hw(n + 1) + Z [(n + 1) + Z Iy(n +1) |"+l)

i=1 n=0 n=—1
T—1 ﬂ_l
N <Z [w(n + 1)|0+1)
n=0
1

T-1 . T-1 2}
= |lpoll Y lw(n + 1)+ + [|r||T 7 <Z |w(n + 1)|0+1)

n=0 n=0

- e
7 n= |¢'(7l + 1)|9+1 +37 I+ D 71
+ To+1 Z ||Pz‘||(1+ T E - T ,;,IW(H+1)|0+1'

Then we get

m T-—1
(ﬁ— |lpol| — T Zupm) 3 lw(n + 1)+
i=1 n=0
_1
. T-1 6+1 0 m
< |Ir||T 7 (Z fw(n + 1)|"+1) +Te-+—12||pi||

T+6 +1 6+1 + +1 0+1 040-;1T-—1
(1 -+ L=t [P(n Z )_|0 e +n1—)F91|17(n )l ) — 1] Z lw(n + 1)°F1.

It follows from (6) that B — ||po|| — 7+ S llps]| > 0. Then

e m
0 < B~ llpoll = 7% > Iipill

=1
__6
0 T-1 6+1 0 m
< i (z o + maﬂ) +77 S
n=0 i=1

o

Ly S WA DI+ 50 e+ DI 1T
Yo lw(n +1)[#+1 -
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We now prove that there exists M; > 0 such that z \w (u+ D) < M, for
each w = z-+xg with (z,y) € Ql In fact, if there is a sequonce {w; = 21+ (®0)1}
with (z;,;) € Q1 such that 27~ jwy(u + 1)+ — 400 as I — +00. Then

0< 8~ lpoll = T7 Y |lpill

T-1 _% m
< irlir# (Z lwi(n + 1}19“) +T7 ) |lpil

’ Kl L S DI+ T bt 1>1‘9+l) - 1} .
S lwn(n 4 1)]0+

— 0 as [+ oo,
a contradiction. Hence there is M; > 0 such that 7.~} jw(u + 1)[+! < M.
Then {w(n + 1)| < (M, /T)/¥*) for all n € [0,T — 1]. Thus we get
|z(n 4+ 1)| < Jw(n + )|+ |zo(n + 1) < (M1/T)VOD 4 |zo]|, n€[0,T~1].
Hence
llell < (My/T)V OV + ||zo|| =: Hi.
It follows from (7) that
y(n)
Az(n) = Ap™"! ( ) n=0,...T,
=27 ot
and
Ay(n) = A (n,wn+ 1), win — i (n)),...,wn = 7m(n))), n=90,...,7 - L
Since z(0) = x(T), it is easy to see that there exists kg € [0, T] such that
Ax(ko) 20, Aa(ke+1) <0
or
Az(k‘o) <0, Az(ke+1)>0.

Case 1. Aux(ko) >0, Awx(ko+1) < 0. At this case, we get y(ko) > 0 and
ylko + 1) < 0. Then one sees that there exists a real number £ € [kg, ko + 1]

such that
y(ko + 1) —ylko) 0 —y(ko)

ko +1~ko & — ko

It follows that

ly(ko)l = €~ kollAy(ko)| < |Ay(ko)]
|f (Ko, w(ko + 1), w(ko — T1(ko)), - - ., w(ko — Tm(ko)))|
lf(n’ Xy, awm)l = H0~

IA A

max
n€[0,7T—1],|zi|<Hy,i=0,...,m
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Then, for n > ko, one sees that

n—1 n—1
)| = |y(ko) + D Ay(s)| < ly(ko)l + Y |Ay(s)|
s=ko s=0
< Ho+T max |f(n,zo,.-.,2m)| = (1 + T)Ho.

n€l0,T—-1],|z;|<Hy,i=0,...,m

For n < kg, we have

ko—1 ko—1
)| = |y(ko) — Y Ay(s)| < ly(ko)l + Y 1Ay(s)l
s=n s=n
< H = (1+T)Ho.
- 0+Tne[o,T—l],|£:fa§XH1,7;=0,...,mIf(n’xo’ »@m)| = (1+T)Ho
Thus

llyll < (1+T)Ho = Ha.

Case 2. Ax(ko) <0, Az(ko+ 1) > 0. Similar to Case 1, one gets that
llyll < 1+ T)Ho = Ho.
So Q; is bounded and ©; # X since ||(x, y)|| < max{H1, Hy} for all (z,y) € Q.
Let
A= max{Hl, H2} + 1.
Then A < +00. Choose Q = {(z,y) € X : ||(z,y)|| < A}. It is easy to see that
Q O Q1 is an open bounded nonempty subset of X with Q # X. It is easy to
see from the definition of Q that L(z,y) # ANi(z,y) + (1 — A)Nz(z,y) for all
(z,y) € D(L)N 9 and A € (0,1), and Lz = Naz has a solution in Q C X.
It follows from Lemma 2.1 that equation L(z,y) = Ni(z,y) has at least one

solution (z,y), then z + zo is a solution of BVP (1) and (2). The proof is
complete. O

3. An example

In this section, we present an example to illustrate the main results obtained
in Section 2.

Example 3.1. Consider the following boundary value problem
Al¢(Ax(n)) = Bla(n + DR + S pi(n)fa(n — )R
+ Ej:o gj(n)[z(n + j)]2k+1 +r(n),
8 { 2(0)=a(T), Aa(0)=Aa(),
z(1) =7(), € [-m,—1],
z(@) =v¥@), i€ [T+2,T+I],
where 8 > 0, T,1,m are positive integers, k > 0 an integer, ¥, ¢,7,pi,q; are
sequences. Corresponding to BVP (1) and (2), let

, 2k+1
g(n,zo,. .., Tmy1) = Bxg +1,
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and
m 4
W, zo, - Emyt) = 3Pzt + > g ()it +r(n).
i=0 =0

It is easy to show from Theorem L that BVP (8) has at least one solution if

™m !
2k41
llpoll + llgoll + T2 | " [Ipsll + Y llasll | < 6.
3=0

=0

Remark. If k = 0 and ¢{x) = z, (8) becomes
9)
A%z(n) = fr(n+ 1) + 0o pilm)s(n — i) + Y5 gi(m)z(n + ) + 7(n),
2(0) = z(T), Az(0) = Ax(T),
z(i) =~(1), t€[-m,~1],
(i) =¢@G), i€ [T+2,T+1],

BVP (9) is a linear periodic boundary value problem. It follows from Exam-
ple 3.1 that BVP (9) has at least one solution if

m 1
loll + llaoll + 7% | S lipill + S llgs ! | < .

[E) Fe=0
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