East Asian Math. J.
Vol. 40 (2024), No. 1, pp. 085-094
YNMS
http://dx.doi.org/10.7858/eamj.2024.007

EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS FOR p-LAPLACIAN PROBLEMS WITH A SINGULAR WEIGHT

Chan-Gyun Kim and Yong-Hoon Lee*

Abstract

In this paper we study the existence and multiplicity of positive solutions for p-Laplacian problems with a singular weight. Proofs mainly make use of Global Continuation Theorem and Fixed Point Index argument.

1. Introduction

Consider

$$
\left\{\begin{array}{l}
\left(\varphi_{p}\left(u^{\prime}(t)\right)\right)^{\prime}+\lambda h(t) f(u(t))=0, t \in(0,1) \\
u(0)=0, u(1)=b>0
\end{array}\right.
$$

where $\varphi_{p}(s)=|s|^{p-2} s, p>1, \lambda \in[0, \infty)=: \mathbb{R}_{+}$is a parameter, $f \in C\left(\mathbb{R}_{+}, \mathbb{R}_{+}\right)$ with $f(z)>0$ for all $z>0$, and $h \in C((0,1),(0, \infty))$ may be singular at $t=0$ and/or 1.

Throughout this paper, the following hypotheses are assumed, unless otherwise stated.
(F_{1}) for all $R>0$, there exists $A_{R}>0$ such that

$$
f(z) \leq A_{R} z^{p-1} \text { for } z \in[0, R],
$$

(F_{2}) $f_{\infty}:=\lim _{u \rightarrow \infty} \frac{f(u)}{\varphi_{p}(u)}=\infty$,
$\left(F_{3}\right)$ there exists $r_{f}>0$ such that f is nondecreasing on $\left(0, r_{f}\right)$.
Let us denote

$$
\mathcal{A}=\left\{h \in C((0,1),(0, \infty)): \int_{0}^{1} s^{p-1} h(s) d s<\infty\right\}
$$

and

$$
\mathcal{B}=\left\{h \in C((0,1),(0, \infty)): \int_{0}^{1} \varphi_{p}^{-1}\left(\int_{s}^{1} h(\tau) d \tau\right) d s<\infty\right\} .
$$

[^0]In [5], Kim and Lee studied the following problem

$$
\left\{\begin{array}{l}
\left(\varphi_{p}\left(u^{\prime}(t)\right)\right)^{\prime}+\lambda h(t) f(u(t))=0, t \in(0,1) \tag{1}\\
u(0)=a>0, u(1)=0
\end{array}\right.
$$

Here $h \in L^{1}(0,1)$. Under the assumptions that f is nondecreasing and satisfies $\left(F_{2}\right)$, they showed that there exists $\lambda^{*}>0$ such that (1) has at least two positive solutions for $\lambda \in\left(0, \lambda^{*}\right)$, at least one positive solution $\lambda=\lambda^{*}$ and no positive solutions for $\lambda \in\left(\lambda^{*}, \infty\right)$. Later on, in [4], the authors obtained the same result with more general assumptions that $h \in \mathcal{B}$ and $\left(F_{2}\right)$ and $\left(F_{3}\right)$. Motivated by these papers, we study the existence, multiplicity and nonexistence of positive solutions of $\left(E_{\lambda}\right)$.

The usual norm in a Banach space $C^{1}[0,1]$ is denoted by

$$
\|u\|_{1}=\|u\|_{\infty}+\left\|u^{\prime}\right\|_{\infty} \text { for } u \in C^{1}[0,1] .
$$

Here $\|v\|_{\infty}=\max _{t \in[0,1]}|v(t)|$ for $v \in C[0,1]$. We will call u a positive C^{1} solution if u is a positive solution and $u \in C^{1}[0,1]$.

We don't know if all solutions of $\left(E_{\lambda}\right)$ are $C^{1}[0,1]$. If we confine our attention to $C^{1}[0,1]$ as the solution space, we get the following result.
Theorem 1.1. Assume $h \in \mathcal{A},\left(F_{1}\right),\left(F_{2}\right)$ and $\left(F_{3}\right)$. Then there exists $\lambda^{*}>0$ such that $\left(E_{\lambda}\right)$ has at least two positive C^{1}-solutions for $\lambda \in\left(0, \lambda^{*}\right)$, at least one positive C^{1}-solution for $\lambda=\lambda^{*}$ and no positive C^{1}-solutions for $\lambda \in\left(\lambda^{*}, \infty\right)$.

2. Preliminaries

Theorem 2.1. ([7], Global Continuation Theorem) Let X be a Banach space and \mathcal{K} an order cone in X. Consider

$$
\begin{equation*}
x=H(\mu, x), \tag{2}
\end{equation*}
$$

where $\mu \in \mathbb{R}_{+}$and $x \in \mathcal{K}$. If $H: \mathbb{R}_{+} \times \mathcal{K} \rightarrow \mathcal{K}$ is completely continuous and $H(0, x)=0$ for all $x \in \mathcal{K}$. Then $\mathcal{C}_{+}(\mathcal{K})$, the component of the solution set of (2) containing (0,0) is unbounded.
Theorem 2.2. ([6], Generalized Picone Identity) Let us define

$$
\begin{aligned}
& l_{p}[y]=\left(\varphi_{p}\left(y^{\prime}\right)\right)^{\prime}+b_{1}(t) \varphi_{p}(y) \\
& L_{p}[z]=\left(\varphi_{p}\left(z^{\prime}\right)\right)^{\prime}+b_{2}(t) \varphi_{p}(z)
\end{aligned}
$$

If y and z are any functions such that $y, z, \varphi_{p}\left(y^{\prime}\right), \varphi_{p}\left(z^{\prime}\right)$ are differentiable on I and $z(t) \neq 0$ for $t \in I$, the generalized Picone identity can be written as
$\frac{d}{d t}\left\{\frac{|y|^{p} \varphi_{p}\left(z^{\prime}\right)}{\varphi_{p}(z)}-y \varphi_{p}\left(y^{\prime}\right)\right\}=\left(b_{1}-b_{2}\right)|y|^{p}$

$$
\begin{aligned}
& -\left[\left|y^{\prime}\right|^{p}+(p-1)\left|\frac{y z^{\prime}}{z}\right|^{p}-p \varphi_{p}(y) y^{\prime} \varphi_{p}\left(\frac{z^{\prime}}{z}\right)\right] \\
& -y l_{p}(y)+\frac{|y|^{p}}{\varphi_{p}(z)} L_{p}(z)
\end{aligned}
$$

Remark 1. By Young's inequality, we get

$$
\left|y^{\prime}\right|^{p}+(p-1)\left|\frac{y z^{\prime}}{z}\right|^{p}-p \varphi_{p}(y) \varphi_{p}\left(\frac{z^{\prime}}{z}\right) \geq 0
$$

and the equality holds if and only if $\operatorname{sgn} y^{\prime}=\operatorname{sgn} z^{\prime}$ and $\left|\frac{y^{\prime}}{y}\right|^{p}=\left|\frac{z^{\prime}}{z}\right|^{p}$.
Theorem 2.3. ([3]) Let X be a Banach space, \mathcal{K} a cone in X and \mathcal{O} bounded open in X. Let $0 \in \mathcal{O}$ and $A: \mathcal{K} \cap \overline{\mathcal{O}} \rightarrow \mathcal{K}$ be completely continuous. Suppose that $A x \neq \nu x$ for all $x \in \mathcal{K} \cap \partial \mathcal{O}$ and all $\nu \geq 1$. Then $i(A, \mathcal{K} \cap \mathcal{O}, \mathcal{K})=1$.

3. Main result

For the sake of convenience, we transform problem $\left(E_{\lambda}\right)$ into a zero Dirichlet boundary problem. More precisely, introducing $v(t)=u(t)-b t$, we may rewrite $\left(E_{\lambda}\right)$ to the following problem

$$
\left\{\begin{array}{l}
\left(\varphi_{p}\left(v^{\prime}(t)+b\right)\right)^{\prime}+\lambda h(t) f(v(t)+b t)=0, t \in(0,1) \tag{E}\\
v(0)=v(1)=0
\end{array}\right.
$$

Now, we define an operator corresponding to problem $\left(\hat{E}_{\lambda}\right)$. First, we define an operator corresponding to the case $L^{1}(0,1)$. For $g \in L^{1}(0,1)$, define

$$
\zeta_{g}(x)=\int_{0}^{1}\left[\varphi_{p}^{-1}\left(x+\int_{s}^{1} g(\tau) d \tau\right)-b\right] d s
$$

Then, we can easily check the following facts that ζ_{g} is well-defined, strictly increasing, continuous in $(-\infty, \infty), \zeta_{g}(-\infty)=-\infty$ and $\zeta_{g}(\infty)=\infty$. Thus ζ_{g} has the unique zero and denote it by $\xi(g)$. Note that $\xi(0)=b^{p-1}$, and $\xi: L^{1}(0,1) \rightarrow \mathbb{R}$ is a bounded function, i.e., for all $M>0$, there exists $C_{M}>0$ such that $|\xi(g)| \leq C_{M}$ for all g with $\|g\|_{L^{1}(0,1)} \leq M$. Let

$$
\mathcal{K}=\left\{u \in C^{1}[0,1]: u \text { is concave on }(0,1)\right\} .
$$

Then \mathcal{K} is an order cone. Let us define $F: L^{1}((0,1),(0, \infty)) \rightarrow \mathcal{K}$ by

$$
F(g)(t)=\int_{0}^{t}\left(\varphi_{p}^{-1}\left[\xi(g)+\int_{s}^{1} g(\tau) d \tau\right]-b\right) d s
$$

Then F is well defined and $F(g)(0)=F(g)(1)=0$. Define $G: \mathbb{R}_{+} \times \mathcal{K} \rightarrow L^{1}(0,1)$ by

$$
G(\lambda, u)(t)=\lambda h(t) f(u(t)+b t), t \in(0,1) .
$$

Lemma 3.1. Assume $h \in \mathcal{A}$ and $\left(F_{1}\right)$. Then G is well defined, sends bounded sets into bounded sets and continuous.

Proof. For $(\lambda, u) \in \mathbb{R}_{+} \times \mathcal{K}$, by $\left(F_{1}\right)$, there exists $A_{u}>0$ such that

$$
f(z) \leq A_{u} z^{p-1} \text { for } 0 \leq z \leq\|u\|_{\infty}+b \text { and } 0 \leq u(\tau)=\int_{0}^{\tau} u^{\prime}(s) d s \leq \tau\left\|u^{\prime}\right\|_{\infty} .
$$

By this facts,

$$
\begin{aligned}
\int_{0}^{1} G(\lambda, u)(\tau) d \tau & =\int_{0}^{1} \lambda h(\tau) f(u(\tau)+b \tau) d \tau \\
& \leq \lambda A_{u} \int_{0}^{1} h(\tau)(u(\tau)+b \tau)^{p-1} d \tau \\
& \leq \lambda A_{u}\left(\left\|u^{\prime}\right\|_{\infty}+b\right)^{p-1} \int_{0}^{1} \tau^{p-1} h(\tau) d \tau<\infty
\end{aligned}
$$

Thus, G is well-defined and send bounded sets into bounded sets. Moreover, by Lebesgue dominated convergence Theorem, G is continuous.

Define $H: \mathbb{R}_{+} \times \mathcal{K} \rightarrow \mathcal{K}$ by $H(\lambda, u)=F(G(\lambda, u))$, i.e.,

$$
H(\lambda, u)(t)=\int_{0}^{t}\left(\varphi_{p}^{-1}\left[\xi(G(\lambda, u))+\int_{s}^{1} G(\lambda, u)(\tau) d \tau\right]-b\right) d s
$$

Then we can easily see that H is well-defined and $H\left(\mathbb{R}_{+} \times \mathcal{K}\right) \subset \mathcal{K}$. Furthermore, u is a positive solution of $\left(\hat{E}_{\lambda}\right)$ if and only if $u=H(\lambda, u)$ on \mathcal{K}.

By the similar arguments in the proof of Lemma 3 in [1], we can prove the complete continuity of H on $\mathbb{R}_{+} \times \mathcal{K}$. We only state the result as follows.

Lemma 3.2. Assume $h \in \mathcal{A}$ and $\left(F_{1}\right)$. Then $H: \mathbb{R}_{+} \times \mathcal{K} \rightarrow \mathcal{K}$ is completely continuous.

Since $H(0, u)=0$ for all $u \in \mathcal{K}$, by Lemma 3.2 and Global Continuation Theorem (Theorem 2.1), we know that there exists an unbounded continuum \mathcal{C} of positive solutions of $\left(\hat{E}_{\lambda}\right)$ emanating from $(0,0)$. Equivalently, there exists an unbounded continuum \mathcal{C}^{\prime} of positive solutions of $\left(E_{\lambda}\right)$ emanating from $(0, b t)$.

Using the generalized Picone identity and the properties of the p-sine function ([2], [8]), we obtain the following lemmas which determine the shape of the unbounded continuum \mathcal{C}^{\prime} (equivalently \mathcal{C}).

Lemma 3.3. Assume $\left(F_{2}\right)$. Then there exists $\bar{\lambda}>0$ such that if u is a positive solution of $\left(E_{\lambda}\right)$, then $\lambda \leq \bar{\lambda}$.

Proof. Let u be a positive solution of $\left(E_{\lambda}\right)$. Since u is concave and $u(1)=b$, we have $u(t) \geq \frac{1}{4} b$ for all $t \in\left(\frac{1}{4}, \frac{3}{4}\right)$. It follows from $\left(F_{2}\right)$ that there exists $L>0$ such that $f(z)>L z^{p-1}$ for $z \geq \frac{1}{4} b$. Then, we have

$$
\left(\varphi_{p}\left(u^{\prime}(t)\right)\right)^{\prime}+\lambda L h(t) \varphi_{p}(u(t))<0, t \in\left(\frac{1}{4}, \frac{3}{4}\right)
$$

Putting $m:=\min _{t \in\left[\frac{1}{4}, \frac{3}{4}\right]} h(t)>0$, it follows that

$$
\left(\varphi_{p}\left(u^{\prime}(t)\right)\right)^{\prime}+\lambda L m \varphi_{p}(u(t))<0, t \in\left(\frac{1}{4}, \frac{3}{4}\right)
$$

It is easy to check that $w(t)=S_{q}\left(2 \pi_{p}\left(t-\frac{1}{4}\right)\right)$ is a solution of

$$
\left\{\begin{array}{l}
\left(\varphi_{p}\left(w^{\prime}(t)\right)\right)^{\prime}+\left(2 \pi_{p}\right)^{p} \varphi_{p}(w(t))=0, t \in\left(\frac{1}{4}, \frac{3}{4}\right) \\
w\left(\frac{1}{4}\right)=w\left(\frac{3}{4}\right)=0
\end{array}\right.
$$

where S_{q} is the q-sine function with $\frac{1}{p}+\frac{1}{q}=1$ and $\pi_{p}=\frac{2 \pi(p-1)^{1 / p}}{p \sin (\pi / p)}$. Taking $y=w$ and $z=u$ in Theorem 2.2 and integrating from $1 / 4$ to $3 / 4$, by Remark 1 ,

$$
\int_{1 / 4}^{3 / 4}\left(\left(2 \pi_{p}\right)^{p}-\lambda L m\right)|w|^{p} d t \geq 0
$$

which implies

$$
\lambda \leq \frac{\left(2 \pi_{p}\right)^{p}}{L m}=: \bar{\lambda}
$$

Lemma 3.4. Assume $h \in \mathcal{A}$, $\left(F_{1}\right)$ and $\left(F_{2}\right)$. Let $I=[\alpha, \beta] \subseteq(0, \infty)$. Then there exists $b_{I}>0$ such that for all positive C^{1}-solutions u of $\left(E_{\lambda}\right)$ with $\lambda \in I$, we have

$$
\|u\|_{1} \leq b_{I} .
$$

Proof. First we will show that there exists $M_{I}>0$ such that $\|u\|_{\infty}<M_{I}$ for all possible solutions of $\left(E_{\lambda}\right)$ with $\lambda \in I$. Assume on the contrary that there exists a sequence $\left(u_{n}\right)$ of positive solutions of $\left(E_{\lambda_{n}}\right)$ with $\lambda_{n} \in I$ and $\left\|u_{n}\right\|_{\infty} \rightarrow \infty$ as $n \rightarrow \infty$. It follows from the concavity of u_{n} that

$$
u_{n}(t) \geq \frac{1}{4}\left\|u_{n}\right\|_{\infty} \text { for all } t \in\left(\frac{1}{4}, \frac{3}{4}\right) \text { and all } n .
$$

Take $C_{K}=\frac{\left(2 \pi_{p}\right)^{p}}{\alpha m}+1$, where $m:=\min _{t \in\left[\frac{1}{4}, \frac{3}{4}\right]} h(t)>0$. By $\left(F_{2}\right)$, there exists $K>0$ such that $f(z)>C_{K} \varphi_{p}(z)$ for all $z>K$. From the assumption, we get $\left\|u_{N}\right\|_{\infty}>4 K$ for sufficiently large N. Therefore, we have

$$
f\left(u_{N}(t)\right)>C_{K} \varphi_{p}\left(u_{N}(t)\right), t \in\left(\frac{1}{4}, \frac{3}{4}\right) .
$$

This implies

$$
\left(\varphi_{p}\left(u_{N}^{\prime}(t)\right)\right)^{\prime}+\alpha C_{K} m \varphi_{p}\left(u_{N}(t)\right)<0, t \in\left(\frac{1}{4}, \frac{3}{4}\right) .
$$

As in the proof of Lemma 3.3, if we take $w(t)=S_{q}\left(2 \pi_{p}\left(t-\frac{1}{4}\right)\right)$, we obtain

$$
C_{K} \leq \frac{\left(2 \pi_{p}\right)^{p}}{\alpha m}
$$

This contradicts the choice of C_{K}. Thus there exists $M_{I}>0$ such that $\|u\|_{\infty}<$ M_{I} for all possible solutions of $\left(E_{\lambda}\right)$ with $\lambda \in I$. We will show that there exists $L_{I}>0$ such that $\left\|u^{\prime}\right\|_{\infty}<L_{I}$ for all possible C^{1}-solutions u of $\left(E_{\lambda}\right)$ with $\lambda \in I$.

By $\left(F_{1}\right)$, there exists $A_{I}>0$ such that $f(z) \leq A_{I} z^{p-1}$ for $0 \leq z \leq M_{I}$. And there exists $\delta \in\left(0, \frac{1}{2}\right)$ such that

$$
\begin{equation*}
\beta A_{I} \int_{0}^{\delta} s^{p-1} h(s) d s<\frac{1}{2} \tag{3}
\end{equation*}
$$

Let u be a C^{1}-solution of $\left(E_{\lambda}\right)$ with $\lambda \in I$. Since u is concave,

$$
\begin{equation*}
u(t) \leq u^{\prime}(\delta)(t-\delta)+u(\delta) \tag{4}
\end{equation*}
$$

In (4), if $t=0$, then $0=u(0) \leq u^{\prime}(\delta)(-\delta)+u(\delta)$. This implies

$$
\begin{equation*}
u^{\prime}(\delta) \leq \frac{u(\delta)}{\delta} \leq \frac{M_{I}}{\delta} \tag{5}
\end{equation*}
$$

Similarly if $t=1$, then $0<b=u(1) \leq u^{\prime}(\delta)(1-\delta)+u(\delta)$ and we obtain

$$
\begin{equation*}
-u^{\prime}(\delta) \leq \frac{u(\delta)}{1-\delta} \leq \frac{M_{I}}{\delta} \tag{6}
\end{equation*}
$$

By (5) and $(6),\left|u^{\prime}(\delta)\right| \leq \frac{M_{I}}{\delta}$. For $t \in(0, \delta)$, integrating $\left(E_{\lambda}\right)$ from t to δ, by (3) and using the fact $0 \leq u(t)=\int_{0}^{t} u^{\prime}(s) d s \leq t\left\|u^{\prime}\right\|_{\infty}$, we have

$$
\begin{aligned}
\left|\varphi_{p}\left(u^{\prime}(t)\right)\right| & \leq\left|\varphi_{p}\left(u^{\prime}(\delta)\right)\right|+\lambda \int_{t}^{\delta} h(s) f(u(s)) d s \\
& \leq\left|\varphi_{p}\left(u^{\prime}(\delta)\right)\right|+\lambda A_{I} \int_{t}^{\delta} h(s) u(s)^{p-1} d s \\
& \leq\left|\varphi_{p}\left(u^{\prime}(\delta)\right)\right|+\beta A_{I} \int_{0}^{\delta} s^{p-1} h(s) d s\left\|u^{\prime}\right\|_{L^{\infty}(0, \delta)}^{p-1} \\
& \leq\left(\frac{M_{I}}{\delta}\right)^{p-1}+\frac{1}{2}\left\|u^{\prime}\right\|_{L^{\infty}(0, \delta)}^{p-1} \text { for } t \in(0, \delta)
\end{aligned}
$$

Thus, we have

$$
\left\|u^{\prime}\right\|_{L^{\infty}(0, \delta)}^{p-1} \leq 2\left(\frac{M_{I}}{\delta}\right)^{p-1}
$$

On the other hand, again integrating $\left(E_{\lambda}\right)$ from δ to 1 , we have

$$
\left|\varphi_{p}\left(u^{\prime}(1)\right)\right| \leq\left(\frac{M_{I}}{\delta}\right)^{p-1}+\beta M_{1} \int_{\delta}^{1} h(s) d s
$$

where $M_{1}=\sup _{0 \leq z \leq M_{I}} f(z)>0$. Thus, the proof is complete.
By Lemma 3.3 and Lemma 3.4, we get the following proposition.
Proposition 3.5. Assume $\left(F_{1}\right),\left(F_{2}\right)$, and let $h \in \mathcal{A}$. Then there exists an unbounded continuum \mathcal{C}^{\prime} emanating from $(0, b t)$ in the closure of the set of positive solutions of $\left(E_{\lambda}\right)$ in $\mathbb{R}_{+} \times \mathcal{K}$ such that for all $R(\geq b)$, there exists $\left(\lambda_{R}, u_{R}\right) \in \mathcal{C}^{\prime}$ with $\left\|u_{R}\right\|_{1}=R$. Furthermore, $\lambda_{R} \rightarrow 0$ as $R \rightarrow \infty$.

Assume that problem $\left(\hat{E}_{\lambda}\right)$ has a positive solution say, v_{*} at $\lambda_{*}>0$, i.e., v_{*} satisfies

$$
\begin{equation*}
\left(\varphi_{p}\left(v_{*}^{\prime}(t)+b\right)\right)^{\prime}+\lambda_{*} h(t) f\left(v_{*}(t)+b t\right)=0, \quad t \in(0,1) . \tag{7}
\end{equation*}
$$

Consider fixed $\lambda \in\left(0, \lambda_{*}\right)$. For $N>0$, put

$$
\begin{gathered}
\Omega_{N}=\left\{u \in C_{0}^{1}[0,1]: \quad 0<u(t)<u_{*}(t), t \in(0,1), 0<u^{\prime}(0)<u_{*}^{\prime}(0),\right. \\
\left.u_{*}^{\prime}(1)<u^{\prime}(1)<0 \text { and }\left\|u^{\prime}\right\|_{\infty}<N\right\} .
\end{gathered}
$$

Then, Ω_{N} is bounded and open in $C_{0}^{1}[0,1]$. Consider the following modified problem

$$
\left\{\begin{array}{l}
\left(\varphi_{p}\left(v^{\prime}(t)+b\right)\right)^{\prime}+\lambda h(t) f(\gamma(t, v(t))+b t)=0, t \in(0,1) \\
v(0)=v(1)=0
\end{array}\right.
$$

where $\gamma:(0,1) \times \mathbb{R} \rightarrow \mathbb{R}_{+}$by $\gamma(t, z)= \begin{cases}v_{*}(t) & \text { if } z>v_{*}(t), \\ z & \text { if } 0 \leq z \leq v_{*}(t), \\ 0 & \text { if } z<0 .\end{cases}$
Lemma 3.6. Assume $h \in \mathcal{A},\left(F_{2}\right),\left(F_{3}\right)$ and let $\lambda \in\left(0, \lambda_{*}\right)$. Then, there exists $N_{0}>0$ such that $v \in \Omega_{N_{0}} \cap \mathcal{K}$ for all positive C^{1}-solutions v of $\left(M_{\lambda}\right)$.

Proof. Let v be a positive C^{1}-solution of $\left(M_{\lambda}\right)$. Clearly, $v>0$ in $(0,1)$, since v is concave on $(0,1)$ and $v(0)=v(1)=0$. We first show $v(t) \leq v_{*}(t)$ for $t \in(0,1)$. If it is not true, there exists an interval $\left[t_{1}, t_{2}\right] \subset[0,1]$ such that $v(t)>v_{*}(t)$ for $t \in\left(t_{1}, t_{2}\right), v\left(t_{1}\right)=v_{*}\left(t_{1}\right)$ and $v\left(t_{2}\right)=v_{*}\left(t_{2}\right)$. Since $v-v_{*} \in C_{0}\left[t_{1}, t_{2}\right]$, there exists $A \in\left(t_{1}, t_{2}\right)$ such that

$$
\begin{equation*}
v^{\prime}(A)=v_{*}^{\prime}(A) \text { and } v(A)>v_{*}(A) \tag{8}
\end{equation*}
$$

On $\left[t_{1}, t_{2}\right]$, we have

$$
\lambda_{*} f\left(v_{*}(t)+b t\right)>\lambda f\left(v_{*}(t)+b t\right)=\lambda f(\gamma(t, v(t))+b t) .
$$

This implies

$$
\begin{equation*}
\left(\varphi_{p}\left(v^{\prime}(t)+b\right)\right)^{\prime}+\lambda_{*} h(t) f\left(v_{*}(t)+b t\right)>0 \text { for } t \in\left(t_{1}, t_{2}\right) . \tag{9}
\end{equation*}
$$

From (7) and (9), we have

$$
\begin{equation*}
\left(\varphi_{p}\left(v_{*}^{\prime}(t)+b\right)\right)^{\prime}-\varphi_{p}\left(v^{\prime}(t)+b\right)^{\prime}<0 \text { for } t \in\left(t_{1}, t_{2}\right) . \tag{10}
\end{equation*}
$$

For $t \in\left(A, t_{2}\right)$, integrating (10) from A to t, we have $v_{*}^{\prime}(t) \leq v^{\prime}(t)$ by (8). Again integrating this inequality from A to t_{2}, we get $v_{*}(A) \geq v(A)$ and this contradicts (8).

Second, we show $v(t)<v_{*}(t)$ for all $t \in(0,1)$. If it is not true, then by the first argument, we have only two cases; either there exists $\left[t_{3}, t_{4}\right] \subseteq[0,1]$ such that $v(t)=v_{*}(t), t \in\left[t_{3}, t_{4}\right]$ or there exist $t_{5} \in(0,1)$ and $\delta_{1}>0$ such that $v\left(t_{5}\right)=v_{*}\left(t_{5}\right), v(t)<v_{*}(t), t \in\left(t_{5}-\delta_{1}, t_{5}+\delta_{1}\right) \backslash\left\{t_{5}\right\}$ and $v^{\prime}\left(t_{5}\right)=v_{*}^{\prime}\left(t_{5}\right)$. In the first case, we can easily know that (10) is satisfied in $t \in\left(t_{3}, t_{4}\right)$. This is a contradiction. In the second case, by (7), we have

$$
\left(\varphi_{p}\left(v_{*}^{\prime}(t)+b\right)\right)^{\prime}+\lambda h(t) f\left(v_{*}(t)+b t\right)<0, t \in(0,1) .
$$

This implies that there exists $\epsilon_{1}>0$ such that

$$
\begin{equation*}
\max _{t \in\left[t_{5}-\delta_{1}, t_{5}+\delta_{1}\right]}\left\{\left(\varphi_{p}\left(v_{*}^{\prime}(t)+b\right)\right)^{\prime}+\lambda h(t) f\left(v_{*}(t)+b t\right)\right\}=-\epsilon_{1}<0 \tag{11}
\end{equation*}
$$

Since f is uniformly continuous on $\left[0,\left\|v_{*}\right\|_{\infty}+b\right]$, there exists $\delta_{2}>0$ such that if $|x-y|<\delta_{2}$ and $x, y \in\left[0,\left\|v_{*}\right\|_{\infty}+b\right]$, then

$$
|f(x)-f(y)|<\epsilon_{1} C^{-1}
$$

where $C=\lambda \max _{t \in\left[t_{5}-\delta_{1}, t_{5}+\delta_{1}\right]} h(t)>0$. And there exists a subinterval $[c, d]$ containing t_{5} of $\left(t_{5}-\delta_{1}, t_{5}+\delta_{1}\right)$ such that

$$
\begin{equation*}
-\delta_{2}<v(t)-v_{*}(t) \leq 0, t \in[c, d] \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(v-v_{*}\right)^{\prime}(c)>0 \text { and }\left(v-v_{*}\right)^{\prime}(d)<0 . \tag{13}
\end{equation*}
$$

By (12), $f(v(t)+b t)<f\left(v_{*}(t)+b t\right)+\epsilon_{1} C^{-1}, t \in[c, d]$. This implies

$$
\begin{equation*}
\left(\varphi_{p}\left(v_{*}^{\prime}(t)+b\right)\right)^{\prime}+\lambda h(t) f(v(t)+b t) \leq-\epsilon_{1}+\epsilon_{1}=0, t \in[c, d] \tag{14}
\end{equation*}
$$

By (13) and (14), we have

$$
\begin{aligned}
0 & >\left[\varphi_{p}\left(v^{\prime}(d)+b\right)-\varphi_{p}\left(v_{*}^{\prime}(d)+b\right)\right]-\left[\varphi_{p}\left(v^{\prime}(c)+b\right)-\varphi_{p}\left(v_{*}^{\prime}(c)+b\right)\right] \\
& =\int_{c}^{d}\left[\left(\varphi_{p}\left(v^{\prime}(t)+b\right)\right)^{\prime}-\left(\varphi_{p}\left(v_{*}^{\prime}(t)+b\right)\right)^{\prime}\right] d t \\
& =-\int_{c}^{d}\left[\lambda h(t) f(v(t)+b t)+\varphi_{p}\left(v_{*}^{\prime}(t)+b\right)^{\prime}\right] \geq 0 .
\end{aligned}
$$

This is a contradiction. Thus,

$$
\begin{equation*}
v(t)<v_{*}(t), t \in(0,1) \tag{15}
\end{equation*}
$$

Third, we show

$$
\begin{equation*}
0>v^{\prime}(1)>v_{*}^{\prime}(1) \tag{16}
\end{equation*}
$$

From $v_{*}(1)=v(1)=0$ and the continuity of f at b, it follows that, for c sufficiently close to 1 ,

$$
\begin{aligned}
& \lambda_{*} h(t) f\left(v_{*}(t)+b t\right)-\lambda h(t) f(v(t)+b t) \\
= & h(t)\left[\lambda\left(f\left(v_{*}(t)+b t\right)-f(v(t)+b t)\right)+\left(\lambda_{*}-\lambda\right) f\left(v_{*}(t)+b t\right)\right]>0,
\end{aligned}
$$

for $t \in(c, 1)$. This implies

$$
\begin{equation*}
\left(\varphi_{p}\left(v_{*}^{\prime}(t)+b\right)\right)^{\prime}-\left(\varphi_{p}\left(v^{\prime}(t)+b\right)\right)^{\prime}<0, t \in(c, 1) \tag{17}
\end{equation*}
$$

We claim that there exists $d \in(c, 1)$ such that $v^{\prime}(d)>v_{*}^{\prime}(d)$. Indeed, otherwise, $v^{\prime}(t) \leq v_{*}^{\prime}(t)$ for all $t \in(c, 1)$. Integrating this from t to 1 , we have $v(t) \geq$ $v_{*}(t)$, for $t \in(c, 1)$. This is a contradiction by (15). Thus, the claim is done. Integrating (17) from d to 1 , we obtain

$$
\varphi_{p}\left(v_{*}^{\prime}(1)+b\right)-\varphi_{p}\left(v^{\prime}(1)+b\right) \leq \varphi_{p}\left(v_{*}^{\prime}(d)+b\right)-\varphi_{p}\left(v^{\prime}(d)+b\right)<0
$$

and thus $v_{*}^{\prime}(1)<v^{\prime}(1)$. Since v is a positive C^{1}-solution of $\left(\hat{M}_{\lambda}\right), v^{\prime}(1)<0$.

Fourth, we show $0<v^{\prime}(0)<v_{*}^{\prime}(0)$. Since $v_{*}(0)=0$ and $v(t)<v_{*}(t), t \in$ $(0,1)$, there exists $c_{1} \in(0,1)$ such that $v(t)+b t \leq v_{*}(t)+b t \leq r_{f}$ for $t \in\left(0, c_{1}\right)$. By $\left(F_{3}\right)$, we have

$$
\lambda_{*} h(t) f\left(v_{*}(t)+b t\right)>\lambda h(t) f(v(t)+b t) \text { for } t \in\left(0, c_{1}\right),
$$

which implies

$$
\left(\varphi_{p}\left(v_{*}^{\prime}(t)+b\right)\right)^{\prime}-\left(\varphi_{p}\left(v^{\prime}(t)+b\right)\right)^{\prime}<0, t \in\left(0, c_{1}\right)
$$

This is the inequality corresponding to (17). By the similar manner to prove (16), we can show $0<v^{\prime}(0)<v_{*}^{\prime}(0)$.

Finally, by the facts $0<v(t)<v_{*}(t)$ for all $t \in(0,1), v_{*}(0)=v_{*}(1)=0$ and the concavity of v, we have $\left\|v^{\prime}\right\|_{\infty}<N_{0}$ for some $N_{0}>0$. Consequently, $v \in \Omega_{N_{0}} \cap \mathcal{K}$ for all positive C^{1}-solutions v of $\left(M_{\lambda}\right)$.

Now we give the proof of Theorem 1.1.
Proof of Theorem 1.1. Let $\lambda^{*}=\sup \left\{\mu:\left(\hat{E}_{\lambda}\right)\right.$ has at least two positive solutions for all $\lambda \in(0, \mu)\}$. Then, by Lemma 3.3 and Proposition 3.5, we have $0<\lambda^{*} \leq \bar{\lambda}$. By the choice of λ^{*} and the complete continuity of $H,\left(\hat{E}_{\lambda}\right)$ has at least two positive solutions for $\lambda \in\left(0, \lambda^{*}\right)$ and at least one positive solution at $\lambda=\lambda^{*}$. We shall show that $\left(\hat{E}_{\lambda}\right)$ has no positive solution for all $\lambda>\lambda^{*}$. On the contrary, assume that there exists $\lambda_{*}>\lambda^{*}$ such that ($\hat{E}_{\lambda_{*}}$) has a positive solution. We claim that (\hat{E}_{λ}) has at least two positive solutions for $\lambda \in\left[\lambda^{*}, \lambda_{*}\right)$. Then this contradicts the definition of λ^{*} and the proof is done. Define an operator M by taking

$$
M v(t)=\int_{t}^{1}\left(\varphi_{p}^{-1}\left[\xi(\hat{G}(\lambda, v))+\lambda \int_{s}^{1} h(\tau) f(\gamma(\tau, v)+b \tau) d \tau\right]-b\right) d s
$$

where $\hat{G}(\lambda, v)(t)=\lambda h(t) f(\gamma(\tau, v)+b \tau)$. Then $M: \mathcal{K} \rightarrow \mathcal{K}$ is completely continuous and u is a solution of $\left(M_{\lambda}\right)$ if and only if $u=M u$ on \mathcal{K}. By simple calculation, we can show that there exists $R_{1}>0$ such that $\|M v\|_{1}<R_{1}$ for all $v \in \mathcal{K}$. Taking R_{1} big enough satisfying $B_{R_{1}} \supset \Omega_{N_{0}}$ and applying Theorem 2.3, we get

$$
i\left(M, B_{R_{1}} \cap \mathcal{K}, \mathcal{K}\right)=1
$$

By Lemma 3.6 and the excision property, we get

$$
\begin{equation*}
i\left(M, \Omega_{N_{0}} \cap \mathcal{K}, \mathcal{K}\right)=i\left(M, B_{R_{1}} \cap \mathcal{K}, \mathcal{K}\right)=1 \tag{18}
\end{equation*}
$$

Since problem (\hat{E}_{λ}) is equivalent to problem $\left(M_{\lambda}\right)$ on $\Omega_{N_{0}} \cap \mathcal{K}$, we conclude $\left(\hat{E}_{\lambda}\right)$ has a positive solution in $\Omega_{N_{0}} \cap \mathcal{K}$. Assume $H(\lambda, \cdot)$ has no fixed point in $\partial \Omega_{N_{0}} \cap \mathcal{K}$ (otherwise, the proof of our claim is done). Then $i\left(H(\lambda, \cdot), \Omega_{N_{0}} \cap \mathcal{K}, \mathcal{K}\right)$ is well defined and by (18), we have

$$
\begin{equation*}
i\left(H(\lambda, \cdot), \Omega_{N_{0}} \cap \mathcal{K}, \mathcal{K}\right)=1 \tag{19}
\end{equation*}
$$

By Lemma 3.3, we may choose $\lambda_{1}>\bar{\lambda}$ such that $\left(\hat{E}_{\lambda_{1}}\right)$ has no solution in \mathcal{K}. By a priori estimate (Lemma 3.4) with $I=\left[\lambda, \lambda_{1}\right]$, there exists $R_{2}>R_{1}$ such
that for all possible positive C^{1}-solutions u of $\left(\hat{E}_{\mu}\right)$ with $\mu \in\left[\lambda, \lambda_{1}\right]$, we have

$$
\begin{equation*}
\|u\|_{1}<R_{2} \tag{20}
\end{equation*}
$$

Define $T:[0,1] \times\left(\bar{B}_{R_{2}} \cap \mathcal{K}\right) \rightarrow \mathcal{K}$ by $T(\tau, v)=H\left(\tau \lambda_{1}+(1-\tau) \lambda, v\right)$. Then T is completely continuous on $[0,1] \times \mathcal{K}$, and by (20), $T(\tau, v) \neq v$ for all $(\tau, v) \in$ $[0,1] \times\left(\partial B_{R_{2}} \cap \mathcal{K}\right)$. By the property of homotopy invariance, we have

$$
i\left(H(\lambda, \cdot), B_{R_{2}} \cap \mathcal{K}, \mathcal{K}\right)=i\left(H\left(\lambda_{1}, \cdot\right), B_{R_{2}} \cap \mathcal{K}, \mathcal{K}\right)=0
$$

By the additive property and (19), we have

$$
i\left(H(\lambda, \cdot),\left(B_{R_{2}} \backslash \bar{\Omega}_{N_{0}}\right) \cap \mathcal{K}, \mathcal{K}\right)=-1
$$

Therefore (\hat{E}_{λ}) has another positive solution in $\left(B_{R_{2}} \backslash \bar{\Omega}_{N_{0}}\right) \cap \mathcal{K}$ and this completes the claim. Thus, the proof is complete by the equivalence of problems (\hat{E}_{λ}) and (E_{λ}).

References

[1] R. P. Agarwal and H. Lü and D. O'Regan, Eigenvalues and the one-dimensional pLaplacian, J. Math. Anal. Appl., 266 (2002) 383-400.
[2] M. del Pino and M. Elgueta and R. Manásevich, A homotopic deformation along p of a Leray-Schauder degree result and existence for $\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+f(t, u)=0, u(0)=u(T)=$ 0, $p>1$, J. of Differential Equations, 80 (1989), 1-13.
[3] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones. Academic Press, 1998, New York.
[4] C. G. Kim and Y. H. Lee, Existence of multiple positive solutions for p-Laplacian problems with a general indefinite weight, Comm. Contemporary Math., 10 (2008), 337-362
[5] C. G. Kim and Y. H. Lee, Existence of multiple positive solutions for a p-Laplacian problem with L^{1}-indefinite weight, Taiwanese J. Math., 15 (2011) 723-736.
[6] T. Kusano and T. Jaros and N. Yoshida, A Picone-type identity and Sturmian comparison and oscillation theorems for a class of half-linear partial differential equations of second order, Nonlinear Anal., 40 (2000), 381-395.
[7] E. Zeidler, Nonlinear Functional Analysis and its Applications I. Springer-Verlag, 1985, New York.
[8] M. Zhang, Nonuniform nonresonance of semilinear differential equations, J. of Differential Equations, 166 (2000), 33-50.

Chan-Gyun Kim
Department of Mathematics, Chinju National University of Education, Chinju 52673, Republic of Korea

Email address: cgkim75@cue.ac.kr
Yong-Hoon Lee
Department of Mathematics, Pusan National University, Busan 46241, Republic of Korea

Email address: yhlee@pusan.ac.kr

[^0]: Received December 19, 2023; Accepted December 27, 2023.
 2010 Mathematics Subject Classification. 34B15, 34B18, 34B27.
 Key words and phrases. p-Laplacian, Existence, Multiplicity, Singular weight.

 * This work was financially supported by a 2-Year Research Grant of Pusan National University.
 * Corresponding author.

