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MULTIPLE SOLUTIONS TO DISCRETE BOUNDARY VALUE

PROBLEMS FOR THE p-LAPLACIAN WITH POTENTIAL

TERMS ON FINITE GRAPHS

Soon-Yeong Chung and Jea-Hyun Park

Abstract. In this paper, we prove the existence of at least three non-
trivial solutions to nonlinear discrete boundary value problems{

−∆p,ωu(x) + V (x)|u(x)|q−2u(x) = f(x, u(x)), x ∈ S,

u(x) = 0, x ∈ ∂S,

involving the discrete p-Laplacian on simple, finite and connected graphs

S(S ∪ ∂S,E) with weight ω, where 1 < q < p < ∞. The approach is

based on a suitable combine of variational and truncations methods.

1. Introduction

Recently, nonlinear difference equations have been studied in various fields,
such as computer science, biological neural networks, dynamical systems, im-
age processing and many others. In these fields, many authors have widely
developed various methods and techniques to show the existence of multiple
solutions to discrete boundary value problem

(1)

{
−∆(φp(∆u(k − 1))) = a(k)f(k, u(k)), k ∈ [1, T ],
u(0) = u(T + 1) = 0,

where p > 1, T is a fixed positive integer, [1, T ] is the discrete interval (namely,
{1, . . . , T}), a is a positive function on [1, T ], ∆u(k) := u(k + 1) − u(k) is
the forward difference operator, φp(t) := |t|p−2t and f : [1, T ] × R → R is a
continuous function.

To guarantee the existence of solutions to (1), researchers have proposed
various asymptotic behaviors of f at zero or infinity. In [2], Agarwal, Perera and
O’Regan proposed asymptotic behaviors of f : (0,∞)→ R at zero and infinity.
They proved the existence of multiples solutions to (1) with the asymptotic
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behaviors of f . In [10], He proved the existence of multiple solutions to (1) with
the mixed boundary data with some asymptotic behaviors of f : R+ → R+ at
zero and infinity where R+ denotes the non-negative reals. In [5], Candito

and Giovannelli worked with
∫ t

0
f(·, s)ds instead of f . For other results, see

[1, 3, 4, 7, 11] and the references given therein.
In this paper, we consider a graph S = S(S ∪ ∂S,E) with weight ω and the

discrete p-Laplacian ∆p,ω as generalizations the discrete interval [1, T ] and the
operator ∆(φp(∆(·))), respectively. The definitions are in Section 2.

The reason why we consider the discrete p-Laplacian on weighted graphs is
that it is one of the best methods to represent linear or nonlinear phenomena
with network structures (for examples, see [6, 8, 9, 17, 18, 19]).

The main purpose of this paper is to show the existence of multiple solutions
to the discrete boundary value problem on a weighted graph

(2)

{
−∆p,ωu(x) + V (x)|u(x)|q−2u(x) = f(x, u(x)), x ∈ S,
u(x) = 0, x ∈ ∂S,

where 1 < q < p < ∞, S = (S ∪ ∂S,E) is a simple, connected and finite
graph with weight ω, V is a function on S with V (x) > 0 for all x ∈ S, and
f ∈ C(S × R,R), which means f is a function defined on S × R satisfying for
each x ∈ S, f(x, t) is continuous with respect to t.

To show that there exist at least three non-trivial solutions to (2), we con-
sider asymptotic behaviors of f as follows:

(i) a function f satisfies that for some α0 ∈ R,

λ1,0 < lim inf
t→0

f(x, t)

|t|p−2t
≤ lim sup

t→0

f(x, t)

|t|p−2t
< α0, x ∈ S,

and

lim sup
t→−∞

f(x, t)

|t|p−2t
< λ1,0 < lim inf

t→∞

f(x, t)

|t|p−2t
, x ∈ S.

In addition, we assume that

(ii) a function V : S → (0,∞) satisfies
∑
x∈S V (x) < q

p (µ0 − λ1,0),

where µ0 := minx∈S

[
lim inft→0

f(x,t)
|t|p−2t

]
and λ1,0 is the smallest eigenvalue of

the discrete p-Laplacian which is defined in Section 2. These conditions guar-
antee that (2) has at least three non-trivial solutions.

More precisely, we consider two functionals E+ and E− (for definitions, see
Section 2). We show that these functionals E+ and E− have at least one and
two non-trivial critical points, respectively. We finally show that these critical
points are solutions to (2) by observing signs of the critical points.

We note that the case of p = q had dealt with in [13]. In the paper, the
existence of at least two solutions to (2) has been proved under some asymptotic
behaviors of f at zero and at infinity.
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2. Preliminaries

In this section, we start with the graph theoretic notions frequently used
throughout this paper.

By a graph S = S(S ∪ ∂S,E), we mean a two finite and disjoint vertex
set S and ∂S called interior and boundary, respectively, with a set E of un-
ordered pairs of distinct elements of S∪∂S whose elements are called edges. As
conventionally used, we denote by x ∈ S the facts that x is a vertex in S ∪ ∂S.

A graph S is said to be simple if it has neither multiple edges nor loops,
and S is said to be connected if for every pair of vertices x and y, there exists
a sequence (termed a path) of vertices x = x0, x1, . . . , xn−1, xn = y such that
xj−1 and xj are connected by an edge (termed adjacent) for j = 1, . . . , n.

A weight on a graph S is a function ω : S × S → [0,∞) satisfying
(i) ω(x, y) = ω(y, x) > 0 if {x, y} ∈ E,
(ii) ω(x, y) = 0 if and only if {x, y} 6∈ E.

In this paper, we only consider a simple and connected graph S with weight
ω. We note that since a graph S is simple, it is trivial that ω(x, x) = 0 for all
x ∈ S.

Throughout this paper, a function on a graph is understood as a function
defined on the set of vertices of the graph. For a nonempty subset T of vertices
in S, the integration of a function u : T → R is defined by∫

T

u :=
∑
x∈T

u(x).

For p > 1, the p-directional derivative of a function u : S → R in the
direction y is defined by

Dp,ω,yu(x) := |u(y)− u(x)|p−2(u(y)− u(x))
√
ω(x, y)

for x ∈ S. The p-gradient ∇p,ω of a function u : S → R is defined to be

∇p,ωu(x) := (Dp,ω,yu(x))y∈S

for x ∈ S. In the case of p = 2, we write simply ∇ω instead of ∇2,ω.

The discrete p-Laplacian ∆p,ω of a function u : S → R is defined by

∆p,ωu(x) :=
∑
y∈S

|u(y)− u(x)|p−2(u(y)− u(x))ω(x, y), x ∈ S.

We note that for any pair of functions u : S → R and v : S → R, we have

(3) 2

∫
S

v(−∆p,ωu) =

∫
S

∇ωv · ∇p,ωu,

where A · B :=
∑n
i=1 aibi for A = (a1, . . . , an) and B = (b1, . . . , bn). Even

though the formula (3) is proved in [12], we here give the sketch of proof. It
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follows from the definition of the discrete p-Laplacian that

2

∫
S

v(−∆p,ωu) =− 2
∑
x,y∈S

|u(y)− u(x)|p−2(u(y)− u(x))v(x)ω(x, y)

=−
∑
x,y∈S

|u(y)− u(x)|p−2(u(y)− u(x))v(x)ω(x, y)

−
∑
x,y∈S

|u(x)− u(y)|p−2(u(x)− u(y))v(y)ω(y, x).

Since ω(x, y) = ω(y, x) for all x, y ∈ S, we have that

−
∑
x,y∈S

|u(y)− u(x)|p−2(u(y)− u(x))v(x)ω(x, y)

−
∑
x,y∈S

|u(x)− u(y)|p−2(u(x)− u(y))v(y)ω(y, x)

=
∑
x,y∈S

|u(y)− u(x)|p−2(u(y)− u(x))(v(y)− v(x))ω(x, y).

Therefore, by the definition of p-gradient, we have the formula (3).
In this paper, we define a set A0 as follows:

A0 := {u : S → R | u(z) = 0, z ∈ ∂S},
and the norm ‖ · ‖p on A0 is defined by

‖u‖p :=

∑
x∈S

|u(x)|p
 1

p

for u ∈ A0.
For V : S → R, the operator −∆p,ω + V has the smallest eigenvalue λ1,V

which is variationally defined as

λ1,V := inf
φ6≡0
φ∈A0

1
2

∫
S
∇ωφ · ∇p,ωφ+

∫
S
V |φ|p∫

S
|φ|p

.

Then there exists φ ∈ A0 such that

λ1,V =
1
2

∫
S
∇ωφ · ∇p,ωφ+

∫
S
V |φ|p∫

S
|φ|p

,

and the function φ is called an eigenfunction corresponding to λ1,V .
We note that the multiplicity of λ1,V is one and there exists an eigenfunction

φ corresponding to λ1,V such that ‖φ‖p = 1 and φ(x) > 0 for all x ∈ S. In
particular, if V ≡ 0, then the smallest eigenvalue is positive (for more detail,
see [14]). As conventionally used, λ1,0 denotes an eigenvalue in the case of
V ≡ 0. Also, by φ1, we denote an eigenfunction corresponding to λ1,0 satisfying
φ1(x) > 0 for all x in S and

∫
S
|φ1|p = 1.
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For a function f ∈ C(S × R,R), let consider two functionals defined by

E+[u] :=
1

2p

∫
S

∇p,ωu · ∇ωu+
1

q

∫
S

V |u+(x)|q −
∫
S

F (x, u+(x)), u ∈ A0

and

E−[u] :=
1

2p

∫
S

∇p,ωu · ∇ωu+
1

q

∫
S

V |u−(x)|q −
∫
S

F (x, u−(x)), u ∈ A0,

where u+(x) := max{u(x), 0}, u−(x) := min{u(x), 0}, and F (x, u(x)) :=∫ u(x)

0
f(x, s)ds. Then if the function f satisfies

f(x, 0) = 0 for all x ∈ S,

then the functionals E+ and E− are differentiable. Moreover, the partial
derivatives with respect to u(x) are given by

d

du(x)
E+[u] = −∆p,ωu(x) + V (x)|u+(x)|q−2u+(x)− f(x, u+(x)),

and

d

du(x)
E−[u] = −∆p,ωu(x) + V (x)|u−(x)|q−2u−(x)− f(x, u−(x)).

As conventionally used, we denote the partial derivatives with respect to u(x)
by E+′[u](x) and E−′[u](x).

We note that it is clear that if a function u ∈ A0 is either a critical point of
E+ and u(x) ≥ 0 for all x ∈ S or a critical point of E− and u(x) ≤ 0 for all
x ∈ S, then the function u is a solution to (2).

3. Multiple solutions

In this section, we show the existence of non-trivial critical points using the
mountain pass theorem. So we first discuss conditions for f to guarantee that
E+ and E− satisfy the Palais-Smale condition (simply, (PS) condition):

(PS) Suppose that Ω is a real Banach space. A functional E ∈ C1(Ω;R) satisfies
the Palais-Smale condition if for any sequence (un) ⊂ Ω satisfying

(a) E[un] is bounded and
(b) E′[un]→ 0 as n→∞,

the sequence (un) has a convergent subsequence. A sequence satisfying (a) and
(b) is called a (PS) sequence for E.

Theorem 3.1. If a function f ∈ C(S × R,R) satisfies that f(x, 0) = 0 for all
x in S and

λ1,0 < lim inf
t→∞

f(x, t)

|t|p−2t
, x ∈ S,

then the functional E+ satisfies the (PS) condition.
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Proof. We assume that {un} is the (PS) sequence. Since E+′[un](x) → 0 as
n→∞ for all x ∈ S, there exists εn ∈ A0, n = 1, . . . such that

(4) −∆p,ωun(x) = −V (x)|u+
n (x)|q−2u+

n (x) + f(x, u+
n (x)) + εn(x)

for all x ∈ S. Thus εn(x) → 0 for all x. Taking as a non-trivial test function
u−n in (4), since

∫
S
∇p,ωun · ∇ωu−n ≥

∫
S
∇p,ωu−n · ∇ωu−n , we have∫

S

εnu
−
n =

1

2

∫
S

∇p,ωun · ∇ωu−n ≥
1

2

∫
S

∇p,ωu−n · ∇ωu−n .

It follows from the definition of λ1,0 that

λ1,0 ≤
1
2

∫
S
∇ωφ · ∇p,ωφ∫
S
|φ|p

for all φ ∈ A0 with φ 6≡ 0. Hence it implies that

(5)

∫
S

εnu
−
n ≥

1

2

∫
S

∇p,ωu−n · ∇ωu−n ≥ λ1,0‖u−n ‖pp

for all n ∈ N. If there exists a subsequence {unj} such that ‖u−nj‖p →∞, then∫
S

εnju
−
nj − λ1,0‖u−nj‖

p
p → −∞.

It contradicts (5). Hence limnj→∞ ‖u−nj‖p <∞ for all subsequence {unj}. We

now suppose that ‖unj‖p → ∞ for some subsequence {unj}. For each j ∈ N,
we define a function wnj ∈ A0 as follows:

wnj (x) :=
unj (x)

‖unj‖p
, x ∈ S.

Then there exists a function w0 ∈ A0 such that wnj (x) → w0 and ‖w0‖p = 1.
Since limnj→∞ ‖u−nj‖p < ∞ and ‖unj‖p → ∞, the function w0 satisfies that
w0 ≥ 0 and w0 6≡ 0. Since q < p,

λ1,0 < lim inf
t→∞

f(x, t)

|t|p−2t
≤ lim inf

t→∞

−V (x)|t|q−2t+ f(x, t)

|t|p−2t

which implies that there exists µ1 > λ1,0 such that for ε ∈
(
0, (µ1 − λ1,0)/2

)
,

(µ1 − ε)|t|p−2t− C1 ≤ −V (x)|t|q−2t+ f(x, t), t ∈ (min
j,x
{u−nj (x)},∞)

for some constant C1 > 0. Hence we have

(µ1 − ε)|w0(x)|p−2w0(x) ≤ lim
j→∞

−V (x)|unj (x)|q−2unj (x) + f(x, unj (x))

‖unj‖
p−1
p

= lim
j→∞

−∆p,ωunj (x) + εnj (x)

‖unj‖
p−1
p

= −∆p,ωw0(x)



MULTIPLE SOLUTIONS TO THE DISCRETE BOUNDARY VALUE PROBLEMS 1523

for all x ∈ S. Since w0 ≥ 0 and w0 6≡ 0, by Theorem 5.1 in [14], the function
w0 is strictly positive on S. Without loss of generality, we assume that an
eigenfunction φ1 corresponding to λ1,0 satisfies 0 < φ1 < w0 on S. Then we
have that for any ε ∈

(
0, (µ1 − λ1,0)/2

)
,

−∆p,ωw0(x) > (λ1,0 + ε)wp−1
0 (x) > λ1,0φ1(x), x ∈ S.

Hence the functions w0 and φ1 are super-solution and sub-solution, respectively,
to the following equation:

(6)

{
−∆p,ωu(x) = (λ1,0 + ε)|u(x)|p−2u(x), x ∈ S,
u(x) = 0, x ∈ ∂S.

By Theorem D in Appendix, for any ε ∈ (0,
µ2−λ1,0

2 ), there exists a solution
u to the equation (6) which implies that the principle eigenvalue λ1,0 is not
isolated. It is a contradiction by Theorem C in Appendix. Hence ‖un‖p is
bounded. �

Theorem 3.2. If a function f ∈ C(S × R,R) satisfies that f(x, 0) = 0 for all
x in S and

lim sup
t→−∞

f(x, t)

|t|p−2t
< λ1,0, x ∈ S,

then the functional E− satisfies the (PS) condition.

Proof. We assume that {un} is the (PS) sequence. Since E−′[un](x) → 0 as
n→∞ for all x ∈ S, there exists εn ∈ A0, n = 1, . . . such that

(7) −∆p,ωun(x) = −V (x)|u−n (x)|q−2u−n (x) + f(x, u−n (x)) + εn(x)

for all x ∈ S. Thus εn(x) → 0 for all x. Taking as a test function u−n in (7),
since

∫
S
∇p,ωun · ∇ωu−n ≥

∫
S
∇p,ωu−n · ∇ωu−n , we have

1

2

∫
S

∇p,ωu−n · ∇ωu−n ≤ −
∫
S

V |un|q +

∫
S

f(x, u−n )u−n +

∫
S

εnu
−
n .

Since the function f satisfies

lim sup
t→−∞

f(x, t)

|t|p−2t
< λ1,0, x ∈ S,

there exists µ2 < λ1,0 such that

f(x, t) ≥ µ2|t|p−2t− C, (x, t) ∈ S × (−∞, 0)

for some constant C > 0. Hence we have

1

2

∫
S

∇p,ωu−n · ∇ωu−n ≤ −
∫
S

V |u−n |q +

∫
S

µ2|u−n |p +

∫
S

(εn − C)u−n .

By the definition of λ1,0, we have

(8) 0 ≤
∫
S

(µ2 − λ1,0)|u−n |p −
∫
S

V |u−n |q +

∫
S

(εn − C)u−n
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for all n ∈ N. Since 1 < q < p, if there exists a subsequence {unj} such that
‖u−nj‖p →∞, then∫

S

(µ2 − λ1,0)|u−nj |
p −

∫
S

V |u−nj |
q +

∫
S

(εn − C)u−nj → −∞ as j →∞.

It contradicts (8). Hence limnj→∞ ‖u−nj‖p <∞ for all subsequence {unj}. We

now suppose that ‖unj‖p → ∞ for some subsequence {unj}. For each j ∈ N,
we define a function wnj ∈ A0 as follows:

wnj (x) :=
unj (x)

‖unj‖p
, x ∈ S.

Then there exists a function w0 ∈ A0 such that wnj (x) → w0 and ‖w0‖p = 1.
Moreover, w0 ≥ 0 and w0 6≡ 0 from the fact that limnj→∞ ‖u−nj‖p < ∞ and

‖unj‖p →∞. From (7), we have

−∆p,ωunj (x)

‖un−j‖p−1
p

=
−V (x)|u−nj (x)|p−2u−nj (x) + f(x, u−nj (x)) + εnj (x)

‖un−j‖p−1
p

= 0

for all j ∈ N. Hence the function w0 satisfies that{
−∆p,ωw0(x) = 0, x ∈ S
w0(x) = 0, x ∈ ∂S.

By Theorem 5.1 in [14], the above equation has a unique solution w0 ≡ 0 which
contradicts the fact w0 6≡ 0. Hence ‖un‖p is bounded. �

Remark 3.3. By the similar arguments in Theorem 3.1 and Theorem 3.2, we
can see that the functional E defined by

E[u] :=
1

2p

∫
S

∇p,ωu · ∇ωu+
1

q

∫
S

V |u|q −
∫
S

F (x, u), u ∈ A0,

satisfies the (PS) condition if a function f ∈ C(S×R,R) satisfies that f(x, 0) =
0 for all x ∈ S and

lim sup
t→−∞

f(x, t)

|t|p−2t
< λ1,0 < lim inf

t→∞

f(x, t)

|t|p−2t
, x ∈ S.

In [2], it had been proved that in the case of V ≡ 0, E satisfies the (PS)
condition.

In the next lemma, we observe behaviors of E± at the origin O. If the
behavior of the function f at the origin O satisfies

lim sup
t→0

f(x, t)

|t|p−2t
< α0, x ∈ S

for some α0 ∈ R, then there exists r0 > 0 such that E±[u] > 0 for all u ∈ A0

with ‖u‖p = r0, namely, the origin O is a local minimizer of E±. Hence we
note that the origin is a solution of (2) and there is no solution near the origin.
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Lemma 3.4. For a given function V : S → (0,∞), if a function f ∈ C(S ×
R,R) satisfies that there exists α0 ∈ R such that

(9) lim sup
t→0

f(x, t)

|t|p−2t
< α0, x ∈ S,

then the origin O is a local minimizer of E+ and E−.

Proof. It follows from (9) that there exist M < α0 and δ > 0 such that

F (·, t) ≤ M

p
|t|p, |t| < δ.

Hence for each u ∈ A0 satisfying ‖u‖p = 1 and r ∈ (0, δ), we have

E+[ru] ≥ λ1,0

p
rp +

[
minx∈S{V (x)}

q
− M

p
rp−q

]
rq
∫
S

|u+|p.

Hence E+[ru] > 0 for r ∈ (0,
(
pminV
qM

) 1
p−q

]. Thus the origin O is a local

minimizer of E+. Similarly, O is also a local minimizer of E−. �

To use the mountain pass theorem, we now discuss conditions of f and V to
guarantee that there exists t1 > 0 such that E+[t1φ1] < 0 and E−[−t1φ1] < 0.

Lemma 3.5. Suppose that f ∈ C(S × R,R) satisfies that

(10) λ1,0 < lim inf
t→0

f(x, t)

|t|p−2t
, x ∈ S.

If a function V : S → R satisfies

(11)

∫
S

|V | < q

p
(µ0 − λ1,0),

where µ0 := minx∈S

[
lim inft→0

f(x,t)
|t|p−2t

]
, then there exists t1 > 0 such that

E+[t1φ1] < 0 and E−[−t1φ1] < 0.

Proof. It follows from the definition of µ0 that for sufficiently small ε > 0 and
for each T > 0, there exists rT > p such that{

f(x, t) > (µ0 − ε)|t|p−2t− r
r−p |t|

r−2t, 0 < t < T, r > rT ,

f(x, t) < (µ0 − ε)|t|p−2t− r
r−p |t|

r−2t, −T < t < 0, r > rT

which implies that

F (x, t) >
µ0 − ε
p
|t|p − 1

r − p
|t|r, 0 < |t| < T, r > rT .

Hence for a positive eigenfunction φ1 corresponding to λ1,0 with ‖φ1‖p = 1,
the functional E+ satisfies

E+[tφ1] <
|t|p

p

[
1

2

∫
S

∇p,ωφ1 · ∇ωφ1

]
+
|t|q

q

∫
S

V φq1
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− µ0 − ε
p

∫
S

φp1 +
1

r − p
|t|r
∫
S

φr1

<
λ1,0 − µ0 + ε

p
|t|p +

[(
1

q

∫
S

|V |
)
|t|q−p +

1

r − p
|t|r−p

]
|t|p.(12)

Now we put h(t) :=
(

1
q

∫
S
|V |
)
|t|q−p + 1

r−p |t|
r−p for t ∈ R \ {0}. Since r > p,

the function h has a minimizer t1 6= 0 which implies

0 = h′(t1) =

(
q − p
q

∫
S

|V |
)
|t1|q−p−2t1 + |t1|r−p−2t1.

Thus

t1 = ±
[(

p− q
q

)∫
S

|V |
] 1
r−q

.

We note that if T increases, then rT also increases. Hence for sufficiently large
T , we have

0 <

[(
p− q
q

)∫
S

|V |
] 1
r−q

< T, r > rT .

Thus from (12),

E+[t1φ1] <

[
λ1,0 − µ0 + ε

p
+

(
1

q

∫
S

|V |
)
|t1|q−p +

1

r − p
|t1|r−p

]
|t1|p.

Since V satisfies ∫
S

|V | < q

p
(µ0 − λ1,0 − 2ε),

we obtain

E+[t1φ1] <
λ1,0 − µ0 + ε

p
+

(
1

q

∫
S

|V |
)
|t1|q−p +

1

r − p
|t1|r−p

<
λ1,0 − µ0 + ε

p
+

(
µ0 − λ1,0 − 2ε

p

)[(
p− q
q

)∫
S

|V |
] q−p
r−q

+
1

r − p

[(
p− q
q

)∫
S

|V |
] r−p
r−q

→ −ε
p

as r →∞.

Hence

E+[t1φ1] < 0.

By the similar argument in the above proof, we can prove that E−[−t1φ1] < 0.
�

Now we are in a position to prove the main result of this paper.
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Theorem 3.6. Suppose that f ∈ C(S × R,R) satisfies that

(13) λ1,0 < lim inf
t→0

f(x, t)

|t|p−2t
≤ lim sup

t→0

f(x, t)

|t|p−2t
< α0, x ∈ S

for some α0 > 0 and

(14) lim sup
t→−∞

f(x, t)

|t|p−2t
< λ1,0 < lim inf

t→∞

f(x, t)

|t|p−2t
, x ∈ S.

If a function V : S → (0,∞) satisfies
∫
S
V < q

p (µ0 − λ1,0), where µ0 :=

minx∈S

[
lim inft→0

f(x,t)
|t|p−2t

]
, then the equation (2) has at least three non-trivial

solutions.

Proof. By Lemma 3.4 and Lemma 3.5, the functional E+ satisfies that
(i) there exists r0 > 0 such that E+[u] > 0 for all u ∈ A0 with ‖u‖p = r0,
(ii) there exists t1 > 0 such that E+[t1φ1] < 0.
Hence by the mountain pass theorem,

(15) c = inf
g∈Γ

max
0≤t≤1

E+[g(t)] > 0

is a critical value of E+ where

Γ := {g ∈ C([0, 1];Rn) | g(0) = O, g(1) = t1φ1}.

Since c > 0 and E+[O] = 0, it is clear that all critical points corresponding to
the critical value c is non-trivial.

We now show that there exists a non-negative critical point corresponding
to the critical value c. It is easy to show that there is no critical point of E+

on {v ∈ A0 | v ≤ 0} without the origin O. Moreover, for every u ∈ A0 with
u+ 6≡ 0 and u− 6≡ 0, it is clear that

E+[u] > E+[u+]

which implies that

max
0≤t≤1

E+[g(t)] > max
0≤t≤1

E+[(g(t))+]

for all g ∈ Γ such that (g(t))+ 6≡ 0 for t ∈ (0, 1]. Therefore all critical points
corresponding to the critical value c is on the path g+. Hence there exists
a non-negative critical point u1 corresponding to the critical value c. Since
the assumption (13) implies f(x, 0) = 0 for all x ∈ S, E+ is differentiable.
Therefore, u1 is a non-trivial and non-negative solution to Eq. (2).

As applying the similar argument with the above proof to the functional
E−, we can see that there exists a non-trivial and non-positive solution u2 of
(2).

Now, we show the existence of the third solution to the equation (2). From
the condition that

lim sup
t→−∞

f(x, t)

|t|p−2t
< λ1,
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there exists µ1 < λ1 such that

F (x, t) ≤ µ1

p
|t|p + C, t < 0

for some C ∈ R. Hence for t > 0 and u ∈ A0 with ‖u‖p = 1,

E−[tu] >
λ1 − µ1

p
tp − C ′t

∫
S

|u−| → ∞ as t→∞,

which implies that the functional E− is coercive. Thus E− has a global mini-
mizer u3. By Lemma 3.5, there exists t1 > 0 such that E−[t1φ1] < 0. Hence the
global minimizer u3 is non-trivial. Moreover, since the functional E− satisfies
that

E−[u] =
1

2p

∫
S

∇p,ωu · ∇ωu+
1

q

∫
S

V |u−(x)|q −
∫
S

F (x, u−(x))

≥ 1

2p

∫
S

∇p,ωu− · ∇ωu− +
1

q

∫
S

V |u−(x)|q −
∫
S

F (x, u−(x))

= E−[u−]

for all u ∈ A0, the global minimizer u3 is non-positive.
We now show that u2 6≡ u3. It follows from E−[−t1φ1] < 0 that E−[u3] < 0.

Since E−[u2] > 0, we have u2 6≡ u3. Therefore, u3 is the third non-trivial and
non-positive solution to the equation (2). �

We note that in Theorem 3.6, it is optimal that the function V is strictly
positive. Let us see the next example.

Example 3.7. Let assume that a weighted graph S whose interior and bound-
ary are given by

S = {x1}, and ∂S = {x0, x2},
and weights on edges are given by

ω(x0, x1) = 1, ω(x1, x2) = 1, and ω(x0, x2) = 0,

as Figure 1.

Figure 1. The graph S.

We now consider a function f : S × R→ R satisfying that
(i) f(x1, t) is continuous with respect to t,
(ii) f is defined on (−∞,−2) ∪ (−1,∞) as

f(x1, t) =

{
3|t|t, t > −1,
|t|t, t < −2.
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If p = 3 and q = 2, then the function f satisfies

lim inf
t→0

f(x1, t)

|t|p−2t
= lim sup

t→0

f(x1, t)

|t|p−2t
= 3,

lim sup
t→−∞

f(x1, t)

|t|p−2t
= 1, lim inf

t→∞

f(x1, t)

|t|p−2t
= 3,

and by the definitions of λ1,0 and µ0, we have

λ1,0 = inf
φ 6≡0
φ∈A0

1
2

∫
S
∇ωφ · ∇p,ωφ∫
S
|φ|p

= inf
φ 6≡0
φ∈A0

2φp(x1)

φp(x1)
= 2,

and

µ0 = min
x∈S

[
lim inf
t→0

f(x, t)

|t|p−2t

]
= lim inf

t→0

f(x1, t)

|t|p−2t
= 3.

Hence the function f satisfies (13) and (14). Finally, taking V (x1) = 1
3 , it holds

that ∫
S

V = V (x1) =
1

3
<
q

p
(µ0 − λ1,0) =

2

3
.

Therefore, by Theorem 3.6, there exist one non-negative critical point of E+

and two non-positive critical points of E−.
Now, let us find the three critical points by analyzing the functionals E+

and E−. Since S = {x1} and f(x1, t) = 3|t|t for t ∈ (−1,∞), the functional
E+ is given by

E+[u] =
2

3
|u(x1)|3 +

1

6
|u+(x1)|2 −

∫ u+(x1)

0

f(x1, t)dt

= −1

3
|u(x1)|3 +

1

6
|u+(x1)|2

for u(x1) > 0. As the graph of E+ in Figure 2, the functional E+ has a positive
critical point.

Figure 2. The graph of E+ on (0,∞).
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We now find two critical points of the functional E−. By the definition of
f , the functional E− is given by

E−[u] = −1

3
|u(x1)|3 +

1

6
|u−(x1)|2 for − 1 < u(x1) < 0,

and

E−[u] =
1

6
|u(x1)|3 +

1

6
|u−(x1)|2 for u(x1) < −2.

The graph of E− on (−∞,−2) ∪ (−1, 0) is in Figure 3. Hence the functional

Figure 3. The graph of E− on (−∞, 0).

E− has a negative critical point on (−1, 0). Moreover, even though we skip
the graph of E− on the interval [−2,−1] in Figure 3, since f is continuous and
f(x1, 0) = 0, the functional E− is continuous and differentiable. Hence it is
clear that there exists a negative critical point on (−2,−1).

We note that it is optimal that V > 0. In this example, if V (x1) = 0, then
the functionals E+ and E− are given by

E+[u] = −1

3
|u(x1)|3 on (0,∞),

and

E−[u] =

{
− 1

3 |u(x1)|3 on (−1, 0),
1
6 |u(x1)|3 on (−∞,−2).

Hence in the case of V (x1) = 0, there is no critical points of E+ and E− on
(0,∞) and (−1, 0), respectively.

Acknowledgments. The author would like to thank one anonymous referee
for his (her) helpful comments and suggestion, which improved the quality of
this paper substantially.
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Appendix

In this section, we discuss that λ1,V is isolated for all V : S → R and we
also deal with the sub-super solution method.

Here, we give the discrete version of Picone’s identity and the comparison
principle which are proved in [16, Theorem 4.1] and [15, Theorem 1], respec-
tively.

Lemma A ([16]). Let u be a non-negative function and v be a positive function
on a graph G. Then

∇ωu · ∇p,ωu−∇ω
(

up

vp−1

)
· ∇p,ωv ≥ 0 on G.

Moreover, the equality holds if and only if u ≡ tv for some constant t > 0.

Lemma B ([15]). For a function V : S → R with λ1,V > 0, suppose that
ui : S̄ → R, i = 1, 2 satisfy the inequalities

(16)

 −∆p,ωu2(x) + V (x)|u2(x)|p−2u2(x)
≥ −∆p,ωu1(x) + V (x)|u1(x)|p−2u1(x), x ∈ S,
u2(z) ≥ u1(z), z ∈ ∂S.

If we assume in addition that{
−∆p,ωu2(x) + V (x)|u2(x)|p−2u2(x) ≥ 0, x ∈ S,
u2(z) ≥ 0, z ∈ ∂S,

then u1 ≤ u2 in S. Moreover, the equalities of (16) are hold if and only if
u1 ≡ u2 in S̄.

Using Lemma A and Lemma B, we prove the following two results.

Theorem C. For V : S → R, λ1,V is isolated.

Proof. Suppose that for ε > 0, there exists ψε ∈ A0 with
∫
S
|ψε|p = 1 such that −∆p,ωψε(x) + V (x)|ψε(x)|p−2ψε(x)

= (λ1,V + ε)|ψε(x)|p−2ψε(x), x ∈ S,
ψε(x) = 0, x ∈ ∂S.

Since the multiplicity of λ1,V is one, there exists a subsequence ψεn such that
ψεn → φ0 as n → ∞ where φ0 is an eigenfunction corresponding to λ1,V

satisfying φ0 > 0 and
∫
S
|φ0|p = 1. Hence for sufficiently small ε, ψε > 0 on S.

Since φ0 is an eigenfunction, we have that

−εφp−1
0 (x) = −∆p,ωφ0(x) + ∆p,ωψε(x)

(
φp−1

0 (x)

ψp−1
ε (x)

)
, x ∈ S.

It implies that

0 > −ε
∫
S

φp0 =
1

2

∫
S

∇p,ωφ0 · ∇ωφ0 −∇p,ωψε · ∇ω
(
φp0
ψε

)
which is contradicted by Lemma A. �
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We now give the method of sub-super-solutions for the discrete p-Laplacian.

Theorem D. For a function f ∈ C(S × R;R), suppose that u and u in A0

with u ≤ u are sub-solution and super-solution to the equation{
−∆p,ωu(x) = f(x, u(x)), x ∈ S
u(x) = 0, x ∈ ∂S.(17)

If the given function f satisfies that there exists λ > 0 such that f(·, t)+λ|t|p−2t
is nondecreasing in S, then there exists a solution u of Eq. (17) such that
u ≤ u ≤ u.

Proof. We put u0 = u and then given uk, k = 0, 1, . . . inductively define uk+1

as follows:  −∆p,ωuk+1(x) + λ|uk+1(x)|p−2uk+1(x)
= f(x, uk(x)) + λ|uk(x)|p−2uk(x), x ∈ S
u(x) = 0, x ∈ ∂S

for sufficiently large λ > 0 satisfying that f(·, t) + λ|t|p−2t is nondecreasing.
We first show that u(x) ≤ u1(x) ≤ u2(x) ≤ · · · for all x ∈ S. Since u0 is a
sub-solution to (17), we have

−∆p,ωu1 + λ|u1|p−2u1 ≥ −∆p,ωu0 + λ|u0|p−2u0

in S. By Lemma B, u1(x) ≥ u0(x) for all x ∈ S. Now, assume inductively

uk−1(x) ≤ uk(x), x ∈ S.
Since f(·, t) + λ|t|p−2t is nondecreasing, we have

−∆p,ωuk+1 + λ|uk+1|p−2uk+1 ≥ −∆p,ωuk + λ|uk|p−2uk

in S. By Lemma B, we have uk+1(x) ≥ uk(x) for all x ∈ S. Now, we show that
uk(x) ≤ u(x) for all x ∈ S. For k = 0, by the assumption, it is clear. Assume
for induction uk(x) ≤ u(x), x ∈ S. Then we have

−∆p,ωuk+1 + λ|uk+1|p−2uk+1 ≤ −∆p,ωu+ λ|u|p−2u

in S. By Lemma B, uk+1(x) ≤ u(x) for all x ∈ S. Thus we have u ≤ u1 ≤ u2 ≤
· · · ≤ u in S which implies that there exists u ∈ A0 such that limn→∞ un = u
in S. Hence the function u is a solution to (17) and u ≤ u ≤ u in S. �
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[4] G. Bonanno, P. Candito, and G. D’Agùı, Variational methods on finite dimensional

Banach spaces and discrete problems, Adv. Nonlinear Stud. 14 (2014), no. 4, 915–39.



MULTIPLE SOLUTIONS TO THE DISCRETE BOUNDARY VALUE PROBLEMS 1533

[5] P. Candito and N. Giovannelli, Multiple solutions for a discrete boundary value problem

involving the p-Laplacian, Comput. Math. Appl. 56 (2008), no. 4, 959–964.

[6] A. Elmoataz, O. Lezoray, and S. Bougleux, Nonlocal discrete regularization on weighted
graphs: a framework for image and manifold processing, IEEE Trans. Image Process.

17 (2008), no. 7, 1047–1060.
[7] L. Gao, Existence of multiple solutions for a second-order difference equation with a

parameter, Appl. Math. Comput. 216 (2010), no. 5, 1592–1598.

[8] S.-Y. Ha, K. Lee, and D. Levy, Emergence of time-asymptotic flocking in a stochastic
Cucker-Smale system, Commun. Math. Sci. 7 (2009), no. 2, 453–469.

[9] S.-Y. Ha and D. Levy, Particle, kinetic and fluid models for phototaxis, Discrete Contin.

Dyn. Syst. Ser. B 12 (2009), no. 1, 77–108.
[10] Z. He, On the existence of positive solutions of p-Laplacian difference equations, J.

Comput. Appl. Math. 161 (2003), no. 1, 193–201.

[11] D. Q. Jiang, D. O’Regan, and R. P. Agarwal, A generalized upper and lower solu-
tion method for singular discrete boundary value problems for the one-dimensional p-

Laplacian, J. Appl. Anal. 11 (2005), no. 1, 35–47.

[12] J.-H. Kim, The (p, ω)-Laplacian operators on nonlinear networks, Ph.D. Thesis, Uni-
versity of Sogang at Korea.

[13] J.-H. Kim, J.-H. Park, and J. Y. Lee, Multiple positive solutions for discrete p-Laplacian
equations with potential term, Appl. Anal. Discrete Math. 7 (2013), no. 2, 327–342.

[14] J.-H. Park and S.-Y. Chung, The Dirichlet boundary value problems for p-Schrödinger

operators on finite networks, J. Difference Equ. Appl. 17 (2011), no. 5, 795–811.
[15] , Positive solutions for discrete boundary value problems involving the p-

Laplacian with potential terms, Comput. Math. Appl. 61 (2011), no. 1, 17–29.

[16] J.-H. Park, J.-H. Kim, and S.-Y. Chung, The p-Schrödinger equations on finite networks,
Publ. Res. Inst. Math. Sci. 45 (2009), no. 2, 363–381.

[17] V. Ta, S. Bougleux, A. Elmoataz, and O. Lezoray, Nonlocal anisotropic discrete regular-

ization for image, data filtering and clustering, Tech. Rep., Univ. Caen, Caen, France,
2007.
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