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INFINITELY MANY SOLUTIONS FOR

(p(x), q(x))-LAPLACIAN-LIKE SYSTEMS

Samira Heidari and Abdolrahman Razani

Abstract. Variational method has played an important role in solving

problems of uniqueness and existence of the nonlinear works as well as
analysis. It will also be extremely useful for researchers in all branches of

natural sciences and engineers working with non-linear equations econ-
omy, optimization, game theory and medicine. Recently, the existence of

infinitely many weak solutions for some non-local problems of Kirchhoff

type with Dirichlet boundary condition are studied [14]. Here, a suitable
method is presented to treat the elliptic partial derivative equations, es-

pecially (p(x), q(x))-Laplacian-like systems. This kind of equations are

used in the study of fluid flow, diffusive transport akin to diffusion, rheol-
ogy, probability, electrical networks, etc. Here, the existence of infinitely

many weak solutions for some boundary value problems involving the

(p(x), q(x))-Laplacian-like operators is proved. The method is based on
variational methods and critical point theory.

Partial differential equations (PDEs) is used in the study of fluid flow, diffu-
sive transport akin to diffusion, rheology, probability, electrical networks, etc.
[3,4,12–15,18–32,34,35]. Also, the existence of solutions for Schrödinger-Hardy
systems, p-fractional Hardy-Schrödinger-Kirchhoff systems as well as a class of
systems involving fractional (p, q)-Laplacian operators are studied. Recently,
the existence of infinitely many weak solutions for p(x)-Laplacian-like operators
is studied (see [36]).

The purpose of this article is to study the existence of infinitely many weak
solutions for (p(x), q(x))-Laplacian-like system originated from capillary phe-
nomenon of the following form:

(1)


−div

(
(1 +

|∇u|p(x)√
1 + |∇u|2p(x)

)|∇u|p(x)−2∇u
)

= λFu(x, u, v) in Ω,

−div
(
(1 +

|∇v|q(x)√
1 + |∇v|2q(x)

)|∇v|q(x)−2∇v
)

= λFv(x, u, v) in Ω,

u = v = 0 on ∂Ω,
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where Ω is an open bounded domain in RN (N ≥ 2) with smooth boundary,
λ ∈ (0,∞), F : Ω̄ × R2 → R is a function such that F (·, s, t) is measurable
in Ω̄ for all (s, t) ∈ R2 and F (x, ·, ·) is C1 in R2 for every x ∈ Ω, and Fu,
Fv denote the partial derivatives of F with respect to u, v, respectively. p(·),
q(·) ∈ C0(Ω̄) with N < p− := infx∈Ω̄ p(x) ≤ p+ := supx∈Ω̄ p(x) < +∞, N <
q− := infx∈Ω̄ q(x) ≤ q+ := supx∈Ω̄ q(x) < +∞.

Capillary action (sometimes capillarity, capillary motion, capillary effect, or
wicking) is the ability of a liquid to flow in narrow spaces without the assis-
tance of, or even in opposition to, external forces like gravity. The effect can
be seen in the drawing up of liquids between the hairs of a paint-brush, in a
thin tube, in porous materials such as paper and plaster, in some non-porous
materials such as sand and liquefied carbon fiber, or in a biological cell. It
occurs because of intermolecular forces between the liquid and surrounding
solid surfaces. If the diameter of the tube is sufficiently small, then the com-
bination of surface tension (which is caused by cohesion within the liquid) and
adhesive forces between the liquid and container wall act to propel the liquid.
The study of capillary phenomena has gained some attention recently. This
increasing interest is motivated not only by fascination in naturally-occurring
phenomena such as motion of drops, bubbles, and waves but also its importance
in applied fields ranging from industrial and biomedical and pharmaceutical to
microfluidic systems.

The study of differential equations and variational problems with variable
exponents have attracted intense research interests in recent years. For some
recent work on this subject see [1,9,10,14,17]. In [36] the authors investigate the
existence of infinitely many weak solutions for the following p(x)-Laplacian-like
operators−div

(
(1 +

|∇u|p(x)√
1 + |∇u|2p(x)

)|∇u|p(x)−2∇u
)

= λf(x, u) in Ω,

u = 0 on ∂Ω.

Now, we recall some background facts concerning the variable exponent
Lebesgue and Sobolev spaces (for more details, see [5,6,8,20] and the references
therein). Set C+(Ω) := {h ∈ C(Ω̄) : h(x) > 1 for all x ∈ Ω̄}. For every
p(·) ∈ C+(Ω), we define the variable exponent Lebesgue space

Lp(·)(Ω) := {u : Ω→ R measurable and

∫
Ω

|u(x)|p(x)dx <∞},

which is a Banach space under the Luxemburg norm, |u|p(·) = inf{µ > 0 :∫
Ω
|u(x)
µ |

p(x)dx ≤ 1}. The variable exponent Sobolev space is defined by

W 1,p(·)(Ω) := {u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)}

and equipped with the norm ‖u‖1,p(·) := |u|p(·) + |∇u|p(·). This space is a
separable, reflexive uniformly convex Banach space (see [7]). One can define
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W
1,p(·)
0 (Ω) as the closure of C∞0 (Ω) in W 1,p(·)(Ω) which can be renormed by

the equivalent norm ‖u‖p(·) := |∇u|p(·). This space is a separable and reflexive
Banach space, too.

The following two propositions are from [8].

Proposition 0.1. Suppose 1
p(·) + 1

p∗(·) = 1. Then Lp(·)(Ω) and Lp
∗(·)(Ω) are

conjugate spaces. For u ∈ Lp(·)(Ω) and v ∈ Lp∗(·)(Ω), we have∣∣∣∣∫
Ω

u(x)v(x)dx

∣∣∣∣ ≤ ( 1

p−
+

1

(p∗)−

)
|u|p(·)|v|p∗(·) ≤ 2|u|p(·)|v|p∗(·),

where p− := infx∈Ω̄ p(x) and (p∗)− := infx∈Ω̄ p
∗(x).

Proposition 0.2. Set ρ(u) =
∫

Ω
|u|p(x)dx. For u, un ∈ Lp(·)(Ω), we have

(1) |u|p(·) < (=;>)1⇔ ρ(u) < (=;>)1,

(2) |u|p(·) > 1⇒ |u|p
−

p(·) ≤ ρ(u) ≤ |u|p
+

p(·),

(3) |u|p(·) < 1⇒ |u|p
+

p(·) ≤ ρ(u) ≤ |u|p
−

p(·),

(4) |un|p(·) → 0⇔ ρ(un)→ 0,
(5) |un|p(·) →∞⇔ ρ(un)→∞.

From Proposition 0.2, for u ∈W 1,p(·)
0 (Ω), the following inequalities hold:

(2) ‖u‖p
−

p(·) ≤
∫

Ω

|∇u|p(x)dx ≤ ‖u‖p
+

p(·) if ‖u‖p(·) ≥ 1,

(3) ‖u‖p
+

p(·) ≤
∫

Ω

|∇u|p(x)dx ≤ ‖u‖p
−

p(·) if ‖u‖p(·) ≤ 1.

Proposition 0.3 ([11]). If Ω ⊂ RN is a bounded domain, then the embedding

W
1,p(·)
0 (Ω) ↪→ C0(Ω̄) is compact whenever N < p−.

In the sequel, X denotes the space W
1,p(·)
0 (Ω) ×W 1,q(·)

0 (Ω), which is a re-
flexive Banach space respect to the norm

‖(u, v)‖ = ‖u‖p(·) + ‖v‖q(·),
where

‖u‖p(·) = |∇u|p(·) and ‖v‖q(·) = |∇v|q(·).
Since p− > N and q− > N , so X is compactly embedded in C0(Ω̄)× C0(Ω̄).

Definition. We say that (u, v) ∈ X is a weak solution of problem (1) if∫
Ω

(
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1 + |∇u|2p(x)

)
∇zdx− λ

∫
Ω

Fu(x, u, v)zdx

+

∫
Ω

(
|∇v|q(x)−2∇v +

|∇v|2q(x)−2∇v√
1 + |∇v|2q(x)

)
∇wdx− λ

∫
Ω

Fv(x, u, v)wdx = 0

for all (z, w) ∈ X.
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Define the functionals Φ,Ψ : X → R, by

Φ(u, v) =

∫
Ω

( 1

p(x)
|∇u|p(x) +

√
1 + |∇u|2p(x)

p(x)

)
dx

+

∫
Ω

( 1

q(x)
|∇v|q(x) +

√
1 + |∇v|2q(x)

q(x)

)
dx(4)

and

Ψ(u, v) =

∫
Ω

F (x, u, v)dx.

Set

Iλ(u, v) := Φ(u, v)− λΨ(u, v) for all (u, v) ∈ X.
By a similar argument in [33], Φ is Gâteaux differentiable and sequentially
weakly lower semicontinuous whose Gâteaux derivative at (u, v) is the func-
tional Φ′(u, v) ∈ X∗, given by

〈Φ′(u, v), (z, w)〉 =

∫
Ω

(
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1 + |∇u|2p(x)

)
∇zdx

+

∫
Ω

(
|∇v|q(x)−2∇v +

|∇v|2q(x)−2∇v√
1 + |∇v|2q(x)

)
∇wdx

for every (z, w) ∈ X.

Proposition 0.4 ([33]). The functional Φ : X → R, given by (4), is convex and
mapping Φ′ : X → X∗ is a strictly monotone and bounded homeomorphism.

Furthermore, Φ is coercive, since√
1 + |∇u|2p(x)

p(x)
≥ 1

p(x)
|∇u|p(x),

so

Φ(u, v) >
2

p+

∫
Ω

|∇u|p(x)dx+
2

q+

∫
Ω

|∇v|q(x)dx.

The above inequality and (2), show that for any (u, v) ∈ X with ‖u‖, ‖v‖ > 1
we have

Φ(u, v) >
2

p+
‖u‖p

−

p(·) +
2

q+
‖v‖q

−

q(·),

which follows lim‖(u,v)‖→+∞ Φ(u, v) = +∞, i.e., Φ is coercive.
Moreover, Ψ is a Gâteaux differentiable functional whose Gâteaux derivative

at (u, v) is the functional Ψ′(u, v) ∈ X∗, given by

〈Ψ′(u, v), (z, w)〉 =

∫
Ω

Fu(x, u, v)zdx+

∫
Ω

Fv(x, u, v)wdx

for every (z, w) ∈ X. Since Ψ has compact derivative, it follows that Ψ is
sequentially weakly continuous.
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Before proving the result, we recall the following multiple critical points the-
orem of G. Bonanno [2] which can be regarded as supplements of the variational
principle of Ricceri [32] which is our main tools.

Theorem 0.5. Let X be a reflexive real Banach space and Φ,Ψ : X → R be
two Gâteaux differentiable functionals such that Φ is strongly continuous, se-
quentially weakly lower semi-continuous, coercive, and Ψ is sequentially weakly
upper-semi-continuous. For every r > infX Φ, set

ϕ(r) := inf
u∈Φ−1(−∞,r)

(supv∈Φ−1(−∞,r) Ψ(v))−Ψ(u)

r − Φ(u)
,

γ := lim inf
r→+∞

ϕ(r), δ := lim inf
r→(infX Φ)+

ϕ(r).

Then

(a) If γ < +∞ then, for each λ ∈ (0, 1
γ ), the following alternative holds:

Either
(a1) Iλ := Φ− λΨ possesses a global minimum, or
(a2) there is a sequence {un} of critical points (local minima) of Iλ such

that limn→+∞ Φ(un) = +∞.
(b) If δ < +∞ then, for each λ ∈ (0, 1

δ ), the following alternative holds:
Either

(b1) there is a global minimum of Φ that is a local minimum of Iλ, or
(b2) there is a sequence {un} of pairwise distinct critical points (local mini-

ma) of Iλ that weakly converges to a global minimum of Φ with

lim
n→+∞

Φ(un) = inf
X

Φ.

1. A sequence of unbounded solutions

For fixed x0 ∈ Ω, set R2 > R1 > 0 such that B(x0, R2) ⊂ Ω, where B(x0, R2)
denotes the ball with center at x0 and radius R2. Set

(5) C := max{ sup
u∈W 1,p(·)

0 \{0}

maxx∈Ω |u(x)|p−

‖u‖p−p(·)
, sup
v∈W 1,q(·)

0 \{0}

maxx∈Ω |v(x)|q−

‖v‖q−q(·)
},

θp+ :=
2Γ(1 + N

2 )(
(Cp+)

1

p− + (Cq+)
1

q−
)min(p−,q−)

π
N
2 (RN2 −RN1 )

(
1− 2

(R2−R1)p+ +2

)
,

θq+ :=
2Γ(1 + N

2 )(
(Cp+)

1

p− + (Cq+)
1

q−
)min(p−,q−)

π
N
2 (RN2 −RN1 )

(
1− 2

(R2−R1)q+ +2

)
,

(6)

where Γ denotes the Gamma function. Now we can state the main result.
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Theorem 1.1. Assume that there exist a point x0 ∈ Ω and R2 > R1 > 0 such
that B(x0, R2) ⊂ Ω and A < θB, where θ := min{θp+ , θq+},

A := lim infξ→+∞

∫
Ω

sup|s|+|t|≤ξ F (x, s, t)dx

ξmin(p−,q−)
and

B := lim sups,t→+∞

∫
B(x0,R1)

F (x, s, t)dx

sp+

p− + tq+

q−

.

Moreover, suppose F (x, s, t) ≥ 0 for every (x, s, t) ∈ Ω × (R+)2. Then the
problem (1) has an unbounded sequence of weak solutions in X, for each

λ ∈ Λ :=
2(

(Cp+)
1

p− + (Cq+)
1

q−
)min(p−,q−)

]
1

θB
,

1

A
[.

Proof. We apply part (a) of Theorem 0.5. Certainly, the weak solutions of
problem (1) are exactly solutions of the equation I ′λ(u, v) = 0. The functional
Φ and Ψ satisfy the assumptions of Theorem 0.5. We show that γ < +∞.
Since X is compactly embedded in C0(Ω̄)× C0(Ω̄) and from (5) one has

sup
x∈Ω
|u(x)|p

−
≤ C‖u‖p

−

p(·) and sup
x∈Ω
|v(x)|q

−
≤ C‖v‖q

−

q(·)

for all (u, v) ∈ X. Thus

sup
x∈Ω

( 1

p+
|u(x)|p

−
+

1

q+
|v(x)|q

−
)
< C

( 1

p+
‖u‖p

−

p(·) +
1

q+
‖v‖q

−

q(·)

)
.

So, for each r > 0

Φ−1(]−∞, r[) : = {(u, v) ∈ X : Φ(u, v) < r}

= {(u, v) ∈ X :
2

p+
‖u‖p

−

p(·) +
2

q+
‖v‖q

−

q(·) < r}(7)

⊆ {(u, v) ∈ X :
1

p+
|u(x)|p

−
+

1

q+
|v(x)|q

−
<
Cr

2
for all x ∈ Ω},

and if we set ∆ := {(u, v) ∈ X : 1
p+ |u(x)|p− + 1

q+ |v(x)|q− < Cr
2 for all x ∈ Ω},

then

sup
(u,v)∈Φ−1(]−∞,r[)

Ψ(u, v) < sup
(u,v)∈∆

∫
Ω

F (x, u, v)dx.

Note that Φ(0, 0) = 0 and Ψ(0, 0) ≥ 0. Therefore, for every r > 0,

ϕ(r) : = inf
Φ(u,v)<r

(
sup(u′,v′)∈Φ−1(]−∞,r[) Ψ(u′, v′)

)
−Ψ(u, v)

r − Φ(u, v)

≤
supΦ−1(]−∞,r[) Ψ

r

≤ 1

r
sup

(u,v)∈∆

∫
Ω

F (x, u, v)dx.
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Let {ξn} be a real sequence of positive numbers such that limn→+∞ ξn = +∞
and

(8) lim
n→+∞

∫
Ω

sup|s|+|t|≤ξn F (x, s, t)dx

ξ
min(p−,q−)
n

= A < +∞.

Set rn := 2
(

ξn

(Cp+)
1

p− +(Cq+)
1

q−

)min(p−,q−)

. Let (u, v) ∈ Φ−1(] −∞, rn[), from

(7), one has

1

p+
|u(x)|p

−
+

1

q+
|v(x)|q

−
<
Crn

2
for all x ∈ Ω.

So,

|u(x)| ≤ (
1

2
Crnp

+)
1

p− and |v(x)| < (
1

2
Crnq

+)
1

q− .

Thus, for each n ∈ N large enough (rn ≥ 2),

|u(x)|+ |v(x)| ≤ (
1

2
Crnp

+)
1

p− + (
1

2
Crnq

+)
1

q−

≤
(

(Cp+)
1

p− + (Cq+)
1

q−
)

(
rn
2

)
1

min(p−,q−) = ξn.

Hence

ϕ(rn) ≤
sup{(u,v)∈X:|u(x)|+|v(x)|<ξn for all x∈Ω}

∫
Ω
F (x, u, v)dx

2

(
ξn

(Cp+)
1

p− +(Cq+)
1

q−

)min(p−,q−)

≤ 1

2

(
(Cp+)

1

p− + (Cq+)
1

q−
)min(p−,q−)

∫
Ω

sup|s|+|t|≤ξn F (x, s, t)dx

ξ
min(p−,q−)
n

.

(9)

Hence, from (8) and (9), one has

γ ≤ lim inf
n→+∞

ϕ(rn)

≤ 1

2

(
(Cp+)

1

p− + (Cq+)
1

q−
)min(p−,q−)

lim
n→+∞

∫
Ω

sup|s|+|t|≤ξn F (x, s, t)dx

ξ
min(p−,q−)
n

=
1

2

(
(Cp+)

1

p− + (Cq+)
1

q−
)min(p−,q−)

A < +∞.

This implies

γ ≤ 1

2

(
(Cp+)

1

p− + (Cq+)
1

q−
)min(p−,q−)

A <
1

λ
.

We conclude that Λ ⊆]0, 1
γ [. For λ ∈ Λ, we show that the functional Iλ =

Φ− λΨ is unbounded from below. Indeed, since

1

λ
<

1

2

(
(Cp+)

1

p− + (Cq+)
1

q−
)min(p−,q−)

θB,
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we can consider a sequence dn of positive numbers and η > 0 such that dn →
+∞ as n→∞ and

(10)
1

λ
< η <

1

2
θ
(

(Cp+)
1

p− + (Cq+)
1

q−
)min(p−,q−)

∫
B(x0,R1)

F (x, dn, dn)dx

dp
+

n

p− + dq
+

n

q−

for n large enough. Suppose wn ⊆ X is a sequence defined by

wn(x) =


0 x ∈ Ω̄ \B(x0, R2),

dn
R2 −R1

(
R2 − {Σni=1(xi − xi0)2} 1

2

)
x ∈ B(x0, R2) \B(x0, R1),

dn x ∈ B(x0, R1).

Bearing (6) in mind, we have

Φ(wn, wn) =

∫
Ω

1

p(x)

(
|∇wn|p(x) +

√
1 + |∇wn|2p(x)

)
dx

+

∫
Ω

1

q(x)

(
|∇wn|q(x) +

√
1 + |∇wn|2q(x)

)
dx

≤
∫
B(x0,R2)\B(x0,R1)

1

p−

(
1 + 2|∇wn|p(x)

)
+

1

q−

(
1 + 2|∇wn|q(x)

)
≤ 1

p−
π

N
2

Γ(1 + N
2 )

(RN2 −RN1 )dp
+

n

(
1 +

2

(R2 −R1)p+

)
(11)

+
1

q−
π

N
2

Γ(1 + N
2 )

(RN2 −RN1 )dq
+

n

(
1 +

2

(R2 −R1)q+

)
=

2(
(Cp+)

1

p− + (Cq+)
1

q−
)min(p−,q−)

( dp
+

n

p−θp+
+

dq
+

n

q−θq+

)
.

Moreover, by assumption that F (x, s, t) ≥ 0, we have

(12) Ψ(wn, wn) =

∫
Ω

F (x,wn, wn)dx ≥
∫
B(x0,R1)

F (x, dn, dn)dx.

So, it follows from (10), (11) and (12) that

Iλ(wn, wn) = Φ(wn, wn)− λΨ(wn, wn)

≤ 2(
(Cp+)

1

p− + (Cq+)
1

q−
)min(p−,q−)

( dp
+

n

p−θp+
+

dq
+

n

q−θq+

)
− λ

∫
B(x0,R1)

F (x, dn, dn)dx

≤ 2

θ
(
(Cp+)

1

p− + (Cq+)
1

q−
)min(p−,q−)

(dp+n
p−

+
dq

+

n

q−

)
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− λ
∫
B(x0,R1)

F (x, dn, dn)dx

<
2(1− λη)

θ
(
(Cp+)

1

p− + (Cq+)
1

q−
)min(p−,q−)

(dp+n
p−

+
dq

+

n

q−

)
for n large enough, so limn→+∞ Iλ(wn, wn) = −∞ and the claim is done.

The alternative of Theorem 0.5 case (a) assures the existence of unbounded
sequence (wn) of critical points of the functional Iλ. This completes the proof
in view of the relation between the critical points of Iλ and the weak solutions
of problem (1). �

Now we present an example (see [16,17]) to show the validity of the obtained
result.

Example 1.2. Let Ω = {(x, y) ∈ R2;x2 + y2 < 3}. p(x, y) and q(x, y) defined
on Ω by

p(x, y) = x2 + y2 + 3 and q(x, y) = x2 + y2 + 4

for all (x, y) ∈ Ω. {an} is an increasing sequence given by

a1 := 2, an+1 := n!(an)
8
3 + 2 (n ≥ 1).

Define the function F : Ω× R2 → R by

F (x, y, s, t) =


(an+1)8e

1− 1
1−[(s−an+1)2+(t−an+1)2]

+x2+y2

,

if (x, y, s, t) ∈ Ω× ∪n≥1B
(
(an+1, an+1), 1

)
,

0, otherwise,

for all (x, y) ∈ Ω. It is obvious that p− = 3, p+ = 6 and q− = 4, q+ = 7.
B
(
(an+1, an+1), 1

)
is an open unit ball of center (an+1, an+1).

We see that F is non-negative and F ∈ C1(Ω × R2). For every n ∈ N, the
restriction of F on B

(
(an+1, an+1), 1

)
attains its maximum in (an+1, an+1) and

F (x, y, an+1, an+1) = ex
2+y2(an+1)8,

then

lim sup
n→+∞

F (x, y, an+1, an+1)
a6n+1

3 +
a7n+1

4

= +∞.

So, we have

B = lim sup
s,t→+∞

∫
B(x0,R1)

F (x, y, s, t)dxdy

s6

3 + t7

4

= |B(x0, R1)| lim sup
s,t→+∞

F (x, y, s, t)
s6

3 + t7

4

= +∞.

On the other hand, for every n ∈ N, we have

sup
|s|+|t|≤an+1−1

F (x, y, s, t) = ex
2+y2(an)8 for all n ∈ N.
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Then

lim
n→+∞

sup|s|+|t|≤an+1−1 F (x, y, s, t)

(an+1 − 1)3
= 0,

thus

lim
ξ→+∞

sup|s|+|t|≤ξ F (x, y, s, t)

ξ3
= 0.

Finally,

A := lim inf
ξ→+∞

∫
Ω

sup|s|+|t|≤ξ F (x, y, s, t)dxdy

ξ3
= 0 < θB.

By applying Theorem 1.1, for every λ ∈]0,+∞[, the system
(13)

−div
(
(1 +

|∇u|p(x,y)√
1 + |∇u|2p(x,y)

)|∇u|p(x,y)−2∇u
)

= λFu(x, y, u, v) in Ω,

−div
(
(1 +

|∇v|q(x,y)√
1 + |∇v|2q(x,y)

)|∇v|q(x,y)−2∇v
)

= λFv(x, y, u, v) in Ω,

u = v = 0 on ∂Ω,

admits infinitely many weak solutions in X.
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