• Title/Summary/Keyword: p and n-type electrical properties

Search Result 198, Processing Time 0.027 seconds

Crystal Growth of InP by VGF Method using Auqrtz Ampoule Characterization

  • Park, E.S.;C.H. Jung;J.J. Myung;J.Y. Hong;Kim, M.K.
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.419-431
    • /
    • 1999
  • InP, III-V binary compound semiconductor, single crystal was grown by VGF (vertical gradient freeze) method using quartz ampoule and its electrical optical properties were investigated. Phosphorous powders were put in the bottom of quartz ampoule and Indium metal changed in conical quartz crucible hat was attached at the upper side position inside the quartz ampoule. It was vacuous under the pressure of 10-5 Torr and sealed up. In metal in the quartz crucible was melted at 1070$^{\circ}C$ and phophorous sublimated at 450$^{\circ}C$, there after it was diffused in In melt and so InP composition was formed. By cooling the InP composition melt (2$^{\circ}C$∼5$^{\circ}C$/hr of cooling rate) in range of 1070$^{\circ}C$∼900$^{\circ}C$, InP crystal was grown. the grown InP single crystals were investigated by X-ray analysis and polarized optical microscopy. Electrical properties of them were measured by Van der Pauw method. At the cooling rate of 2$^{\circ}C$/hr, its direction was (111), quality of the ingot ws better upper side of the ingot than lower. It was found that the InP crystals were n-type semiconductor and the carrier concentration, electron mobility and relative resistivity were 1015∼1016/㎤, 2x103∼3x104$\textrm{cm}^2$/Vsec and 2x10-1∼2x10-3Ωcm in the range of 150K∼300K, respectively.

  • PDF

Characteristics of Ga2O3/4H-SiC Heterojunction Diode with Annealing Process (후열 처리에 따른 Ga2O3/4H-SiC 이종접합 다이오드 특성 분석)

  • Lee, Young-Jae;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.155-160
    • /
    • 2020
  • Ga2O3/n-type 4H-SiC heterojunction diodes were fabricated by RF magnetron sputtering. The optical properties of Ga2O3 and electrical properties of diodes were investigated. I-V characteristics were compared with simulation data from the Atlas software. The band gap of Ga2O3 was changed from 5.01 eV to 4.88 eV through oxygen annealing. The doping concentration of Ga2O3 was extracted from C-V characteristics. The annealed oxygen exhibited twice higher doping concentration. The annealed diodes showed improved turn-on voltage (0.99 V) and lower leakage current (3 pA). Furthermore, the oxygen-annealed diodes exhibited a temperature cross-point when temperature increased, and its ideality factor was lower than that of as-grown diodes.

The passivation of III-V compound semiconductor surface by laser CVD (Laser CVD법에 의한 III-V화합물 반도체 표면의 불활성화)

  • Lee, H.S.;Lee, K.S.;Cho, T.H.;Huh, Y.J.;Kim, S.J.;Sung, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1274-1276
    • /
    • 1993
  • The silicon-nitride films formed by laser CVD method are used for passivating GaAs surfaces. The electrical Properties of metal-insulator-GaAs structure are studied to determined the interfacial characteristics by C-V curves and deep level transient spectroscopy(DLTS). The SiN films are photolysisly deposited from $SiH_4\;and\;NH_3$ in the range of $100^{\circ}C-300^{\circ}C$ on P type, (100) GaAs. The hysteresis is reduced and interface trap density is lowered to $10^{12}-10^{13}$ at $100^{\circ}C-200^{\circ}C$. The surface leakage current is studied too. The passivated GaAs have a little leakage current compared to non passivated GaAs.

  • PDF

Characteristics of As-doped ZnO thin films with various buffer layer temperatures prepared by PLD method (PLD법을 이용한 Buffer Layer 증착온도에 따른 As-doped ZnO 박막의 특성)

  • Lee, Hong-Chan;Shim, Kwang-Bo;Oh, Young-Jei
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.84-89
    • /
    • 2006
  • Highly concentrated p-type ZnO thin films can be obtained by doping of N, P and As elements. In this study, undoped ZnO buffer layers were prepared on a (0001) sapphire substrate by a ultra high vaccum pulsed laser deposition(UHV-PLD) method. ZnO buffer layers were deposited with various deposition temperature($400{\sim}700^{\circ}C$) at 350 mtorr of oxygen working pressure. Arsenic doped(1 wt%) ZnO thin films were deposited on the ZnO buffer layers by UHV-PLD. Crystallinity of the samples were evaluated by X-ray diffractometer and scanning electron microscopy. Optical, electrical properties of the ZnO thin films were estimated by photoluminescence(PL) and Hall measurements. The optimal condition of the undoped ZnO buffer layer for the deposition of As-doped ZnO thin films was at $600^{\circ}C$ of deposition temperature.

Thermoelectric properties of SiC prepared by refined diatomite (정제 규조토로 합성한 탄화규소의 열전특성)

  • Pai, Chul-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.596-601
    • /
    • 2020
  • Silicon carbide is considered a potentially useful material for high-temperature electronic devices because of its large band gap energy and p-type or n-type conduction that can be controlled by impurity doping. Accordingly, the thermoelectric properties of -SiC powder prepared by refined diatomite were investigated for high value-added applications of natural diatomite. -SiC powder was synthesized by a carbothermal reduction of the SiO2 in refined diatomite using carbon black. An acid-treatment process was then performed to eliminate the remaining impurities (Fe, Ca, etc.). n-Type semiconductors were fabricated by sintering the pressed powder at 2000℃ for 1~5h in an N2 atmosphere. The electrical conductivity increased with increasing sintering time, which might be due to an increase in carrier concentration and improvement in grain-to-grain connectivity. The carrier compensation effect caused by the remaining acceptor impurities (Al, etc.) in the obtained -SiC had a deleterious influence on the electrical conductivity. The absolute value of the Seebeck coefficient increased with increasing sintering time, which might be due to a decrease in the stacking fault density accompanied by grain or crystallite growth. On the other hand, the power factor, which reflects the thermoelectric conversion efficiency of the present work, was slightly lower than that of the porous SiC semiconductors fabricated by conventional high-purity -SiC powder, it can be stated that the thermoelectric properties could be improved further by precise control of an acid-treatment process.

Growth and Electrical Properties of Spinel-type ZnCo2O4 Thin Films by Reactive Magnetron Sputtering (반응성 때려내기 방법에 의한 스피넬 형 ZnCo2O4 박막의 성장과 전기적 물성)

  • Song, In-Chang;Kim, Hyun-Jung;Sim, Jae-Ho;Kim, Hyo-jin;Kim, Do-jin;Ihm, Young-Eon;Choo, Woong-Kil
    • Korean Journal of Materials Research
    • /
    • v.13 no.8
    • /
    • pp.519-523
    • /
    • 2003
  • We report the synthesis of cubic spinel $ZnCo_2$$O_4$thin films and the tunability of the conduction type by control of the oxygen partial pressure ratio. Zinc cobalt oxide films were grown on$ SiO_2$(200 nm)/Si substrates by reactive magnetron sputtering method using Zn and Co metal targets in a mixed Ar/$O_2$atmosphere. We found from X-ray diffraction measurements that the crystal structure of the zinc cobalt oxide films grown under an oxygen-rich condition (the $O_2$/Ar partial pressure ratio of 9/1) changes from wurtzite-type $Zn_{1-x}$ $Co_{X}$O to spinel-type $ZnCo_2$$O_4$with the increase of the Co/Zn sputtering ratio,$ D_{co}$ $D_{zn}$ . We noted that the above structural change accompanied by the variation of the majority electrical conduction type from n-type (electrons) to p-type (holes). For a fixed $D_{co}$ $D_{zn}$ / of 2.0 yielding homogeneous spinel-type $_2$O$ZnCo_4$films, the type of the majority carriers also varied, depending on the$ O_2$/Ar partial pressure ratio: p-type for an $O_2$-rich and n-type for an Ar-rich atmosphere. The maximum electron and hole concentrations for the Zn $Co_2$ $O_4$films were found to be 1.37${\times}$10$^{20}$ c $m^{-3}$ and 2.41${\times}$10$^{20}$ c $m^{-3}$ , respectively, with a mobility of about 0.2 $\textrm{cm}^2$/Vs and a high conductivity of about 1.8 Ω/$cm^{-1}$ /.

Annealing Effect on the Photoluminescence of Si Nanocrystallites Thin Films (후열처리에 따른 실리콘 나노결정 박막의 광학적 특성 변화 연구)

  • Jeon, Gyeong-A;Kim, Jong-Hun;Choe, Jin-Baek;Lee, Sang-Ryeol
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.6
    • /
    • pp.236-239
    • /
    • 2002
  • Si nanocrystallites thin films on P-type (100) Si substrate have been fabricated by pulsed laser deposition using a Nd:YAG laser. After deposition, samples were annealed in several environmental gases ;It the temperature range of 400 to $800^{\circ}C$ Hydrogen passivation was then performed in the forming gas (95 % $N_2$ + 5 % $H_2$) for 1 hr. Strong violet-indigo photoluminescence has been observed at room temperature on nitrogen ambient-annealed Si nanocrystallites. We report the variation of photoluminescence (PL) properties of Si thin films by changing annealing temperatures and by using hydrogen passivation. The results could suggest that the origin of violet-indigo PL should be related to the Quantum size effect of Si nanocrystallite.

Selective Enhancement of the Sheet Resistance of Graphene Using Dielectrophoresis (유전영동 현상을 이용한 그래핀 면저항의 선택적 향상 연구)

  • Oh, Sooyeoun;Kim, Jihyun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.253-257
    • /
    • 2017
  • Graphene is a monolayer carbon material which consists of $sp^2$ bonding between carbon atoms. Its excellent intrinsic properties allow graphene to be used in various research fields. Many researchers believe that graphene is suitable for electronic device materials due to its high electrical conductivity and carrier mobility. Through chemical doping, n- or p-type graphene can be obtained, and consequently graphene-based devices which have more comparable structure to common semiconductor-based devices can be fabricated. In our research, we introduced the dielectrophoresis process to the chemical doping step in order to improve the effect of chemical doping of graphene selectively. Under 10 kHz and $5V_{pp}$ (peak-to-peak voltage), doping was conducted and the Au nanoparticles were effectively formed, as well as aligned along the edges of graphene. Effects of the selective chemical doping on graphene were investigated through Raman spectroscopy and the change of its electrical properties were explored. We proposed the method to enhance the doping effect in local region of a graphene layer.

High-Mobility Ambipolar Polymer Semiconductors by Incorporation of Ionic Additives for Organic Field-Effect Transistors and Printed Electronic Circuits (이온성 첨가제 도입을 통한 고이동도 고분자 반도체 특성 구현과 유기전계효과트랜지스터 및 유연전자회로 응용 연구)

  • Lee, Dong-Hyeon;Moon, Ji-Hoon;Park, Jun-Gu;Jung, Ji Yun;Cho, Il-Young;Kim, Dong Eun;Baeg, Kang-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.3
    • /
    • pp.129-134
    • /
    • 2018
  • Herein, we report the manufacture of high-performance, ambipolar organic field-effect transistors (OFETs) and complementary-like electronic circuitry based on a blended, polymeric, semiconducting film. Relatively high and well-balanced electron and hole mobilities were achieved by incorporating a small amount of ionic additives. The equivalent P-channel and N-channel properties of the ambipolar OFETs enabled the manufacture of complementary-like inverter circuits with a near-ideal switching point, high gain, and good noise margins, via a simple blanket spin-coating process with no additional patterning of each active P-type and N-type semiconductor layer.

Analysis of Electrical and Optical Characteristics of Silicon Based High Sensitivity PIN Photodiode (Silicon기반 고감도 PIN Photodiode의 전기적 및 광학적 특성 분석)

  • Lee, Jun-Myung;Kang, Eun-Young;Park, Keon-Jun;Kim, Yong-Kab;Hoang, Geun-Chang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1407-1412
    • /
    • 2014
  • In order to improve spectrum sensitivity of photodiode for detection of the laser at 850 nm ~ 1000 nm of near-infrared wavelength band, this study has produced silicon-based fast film PIN photodiode and analyzed electrical and optical properties. The manufactured device is packaged in TO-18 type. The electrical properties of the dark currents both Anode 1 and Anode 2 have valued of approximately 0.055 nA for 5 V reverse bias, while the capacitance showed 19.5 pF at frequency range of 1 kHz and about 19.8 pF at the range of 200 kHz for 0 V. In addition, the rising time of output signal was verified to have fast response time of about 30 ns for 10 V. For the optical properties, the best spectrum sensitivity was 0.66 A/W for 880 nm, while it was relatively excellent value of 0.45 A/W for 1,000 nm.