Browse > Article
http://dx.doi.org/10.4313/JKEM.2020.33.2.155

Characteristics of Ga2O3/4H-SiC Heterojunction Diode with Annealing Process  

Lee, Young-Jae (Department of Electronic Materials Engineering, Kwangwoon University)
Koo, Sang-Mo (Department of Electronic Materials Engineering, Kwangwoon University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.33, no.2, 2020 , pp. 155-160 More about this Journal
Abstract
Ga2O3/n-type 4H-SiC heterojunction diodes were fabricated by RF magnetron sputtering. The optical properties of Ga2O3 and electrical properties of diodes were investigated. I-V characteristics were compared with simulation data from the Atlas software. The band gap of Ga2O3 was changed from 5.01 eV to 4.88 eV through oxygen annealing. The doping concentration of Ga2O3 was extracted from C-V characteristics. The annealed oxygen exhibited twice higher doping concentration. The annealed diodes showed improved turn-on voltage (0.99 V) and lower leakage current (3 pA). Furthermore, the oxygen-annealed diodes exhibited a temperature cross-point when temperature increased, and its ideality factor was lower than that of as-grown diodes.
Keywords
Gallium oxide; Silicon carbide; Heterojunction; Diodes; Oxygen annealing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Kim, S. Kyoung, T. Kang, J. Y. Kwon, K. H. Kim, and Y. S. Rim, J. Mater. Chem. C, 7, 10953 (2019). [DOI: https://doi.org/10.1039/c9tc02922b]   DOI
2 J. A. Cooper, M. R. Melloch, J. M. Woodall, J. Spitz, K. J. Schoen, and J. Henning, Mater. Sci. Forum, 264, 895 (1998). [DOI: https://doi.org/10.4028/www.scientific.net/MSF.264-268.895]   DOI
3 H. Bartolf, V. K. Sundaramoorthy, A. Mihaila, M. Berthou, P. Godignon, and J. Millan, Mater. Sci. Forum, 778, 795 (2014). [DOI: https://doi.org/10.4028/www.scientific.net/MSF.778-780.795]   DOI
4 J. A. Cooper, Mater. Sci. Forum, 389, 15 (2002). [DOI: https://doi.org/10.4028/www.scientific.net/MSF.389-393.15]   DOI
5 A. Y. Polyakov, N. B. Smirnov, I. V. Shchemerov, E. B. Yakimov, S. J. Pearton, C. Fares, J. Yang, F. Ren, J. Kim, P. B. Lagov, V. S. Stoblunov, and A. Kochkova, Appl. Phys. Lett., 113, 092102 (2018) [DOI: https://doi.org/10.1063/1.5049130]   DOI
6 F. Shi, J. Han, Y. Xing, J. Li, L. Zhang, T. He, T. Li, X. Deng, X. Zhang, and B. Zhang. Mater. Lett., 237, 105 (2019). [DOI: https://doi.org/10.1016/j.matlet.2018.11.012]   DOI
7 H. Altuntas, I. Donmez, C. Ozgit-Akgun, and N. Biyikli, J. Vac. Sci. Technol., A, 32, 041504 (2014). [DOI: https://doi.org/10.1116/1.4875935]   DOI
8 L. Huang, Q. Feng, G. Han, F. Li, X. Li, L. Fang, X. Xing, J. Zhang, and Y. Hao, IEEE Photonics J., 9 (2017). [DOI: https://doi.org/10.1109/JPHOT.2017.2731625]
9 S. Nakagomi, T. Sakai, K. Kikuchi, and Y. Kokubun, Phys. Status Solidi A, 216, 1700796 (2018) [DOI: https://doi.org/10.1002/pssa.201700796]   DOI
10 Z. Zhang, E. Farzana, A. R. Arehart, and S. A. Ringel, Appl. Phys. Lett., 108, 052105 (2016) [DOI: https://doi.org/10.1063/1.4941429]   DOI
11 A. K. Saikumar, S. D. Nehate, and K. B. Sundaram, ECS J. Solid State Sci. Technol., 8, Q3064 (2019). [DOI: https://doi.org/10.1149/2.0141907jss]   DOI
12 M. J. Tadjer, J. L. Lyons, N. Nepal, J. A. Freitas Jr., A. D. Koehler, and G. M. Foster, ECS J. Solid State Sci. Technol., 8, Q3187 (2019). [DOI: https://doi.org/10.1149/2.0341907jss]   DOI
13 A. Y. Polyakov, N. B. Smirnov, I. V. Shchemerov, S. J. Pearton, F. Ren, A. V. Chernykh, P. B. Lagov, and T. V. Kulevoy, APL Mater., 6, 096102 (2018). [DOI: https://doi.org/10.1063/1.5042646]   DOI
14 B. J. Baliga, J. Appl. Phys., 53, 1759 (1982). [DOI: https://doi.org/10.1063/1.331646]   DOI
15 M. E. Ingebrigtsen, J. B. Varley, A. Y. Kuznetsov, B. G. Svensson, G. Alfieri, A. Mihaila, U. Badstubner, and L. Vines, Appl. Phys. Lett., 12, 042104 (2018). [DOI: https://doi.org/10.1063/1.5020134]