DOI QR코드

DOI QR Code

Selective Enhancement of the Sheet Resistance of Graphene Using Dielectrophoresis

유전영동 현상을 이용한 그래핀 면저항의 선택적 향상 연구

  • Oh, Sooyeoun (Department of chemical and biological engineering, Korea University) ;
  • Kim, Jihyun (Department of chemical and biological engineering, Korea University)
  • 오수연 (고려대학교 화공생명공학과) ;
  • 김지현 (고려대학교 화공생명공학과)
  • Received : 2016.09.10
  • Accepted : 2016.12.27
  • Published : 2017.04.01

Abstract

Graphene is a monolayer carbon material which consists of $sp^2$ bonding between carbon atoms. Its excellent intrinsic properties allow graphene to be used in various research fields. Many researchers believe that graphene is suitable for electronic device materials due to its high electrical conductivity and carrier mobility. Through chemical doping, n- or p-type graphene can be obtained, and consequently graphene-based devices which have more comparable structure to common semiconductor-based devices can be fabricated. In our research, we introduced the dielectrophoresis process to the chemical doping step in order to improve the effect of chemical doping of graphene selectively. Under 10 kHz and $5V_{pp}$ (peak-to-peak voltage), doping was conducted and the Au nanoparticles were effectively formed, as well as aligned along the edges of graphene. Effects of the selective chemical doping on graphene were investigated through Raman spectroscopy and the change of its electrical properties were explored. We proposed the method to enhance the doping effect in local region of a graphene layer.

그래핀은 $sp^2$ 결합으로 이루어진 한 겹의 탄소 물질이며, 그래핀 본래의 우수한 물성으로 인해 다양한 분야에서 활용되고 있다. 그래핀의 높은 전기전도도와 전하이동도로 인해서 (광)전자 소자 물질로 주목받고 있다. 화학적 도핑 과정을 통해 n 형과 p 형의 그래핀이 형성 가능하며 이를 이용하여 다양한 구조의 소자 형성이 가능하게 되었다. 본 연구에서 그래핀의 도핑 효과를 선택적으로 증대시키기 위해 유전영동 현상을 도입하였다. 주파수 10 kHz, $5V_{pp}$ (peak-to-peak voltage) 조건에서 유전 영동 현상을 이용하였을 때 금나노입자들이 전극 위치 주변으로 집중됨을 확인하였다. 그래핀의 도핑 효과를 라만 분광법과 전기적 물성 변화를 통하여 조사하였으며, 그래핀에 $AuCl_3$ 용액을 이용한 유전 영동 현상을 통하여, 그래핀 기반 소자의 국소적인 부분에 선택적으로 화학적 도핑이 가능함을 확인하였다. 이러한 연구는 그래핀 기반 소자와 interconnection 등에 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H. R., Song, Y. I., Kim, Y.-J., Kim, K. S., Ozyilmaz, B., Ahn, J.-H., Hong, B. H. and Iijima, S., "Roll-to-roll Production of 30-inch Graphene Films for Transparent Electrodes," Nat. Nanotechnol., 5, 574(2010). https://doi.org/10.1038/nnano.2010.132
  2. Bonaccorso, F., Sun, Z., Hasan, T. and Ferrari, A. C., "Graphene Photonics and Optoelectronics," Nat. Photon., 4, 611(2010). https://doi.org/10.1038/nphoton.2010.186
  3. Mattevi, C., Kim, H. and Chhowalla, M., "A Review of Chemical Vapour Deposition of Graphene on Copper," J. Mater. Chem., 21, 3324(2011). https://doi.org/10.1039/C0JM02126A
  4. Bae, S., Kim, S. J., Shin, D., Ahn, J.-H. and Hong, B. H., "Towards Industrial Applications of Graphene Electrodes," Phys. Scr., T146, 014024(2012).
  5. Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blanke, P., Katsnelson, M. I. and Novoselov, K. S., "Detection of Individual Gas Molecules Adsorbed on Graphene," Nat. Mater., 6, 652(2007). https://doi.org/10.1038/nmat1967
  6. Schwierz, F., "Graphene Transistors," Nat. Nanotechnol., 5, 487 (2010). https://doi.org/10.1038/nnano.2010.89
  7. Liu, X., Zhang, X. W., Meng, J. H., Yin, Z. G., Zhang, L. Q., Wang, H. L. and Wu, J. L., "High Efficiency Schottky Junction Solar Cells by co-doping of Graphene With Gold Nanoparticles and Nitric Acid," Appl. Phys. Lett., 106, 233901(2015). https://doi.org/10.1063/1.4922373
  8. Miao, X., Tongay, S., Petterson, M. K., Berke, K., Rinzler, A. G., Appleton, B. R. and Hebard, A. F., "High Efficiency Graphene Solar Cells by Chemical Doping," Nano Lett., 12, 2745(2012). https://doi.org/10.1021/nl204414u
  9. Choi, B. G., Huh, Y. S., Hong, W. H., "Electrochemical Characterization of Porous Graphene Film for Supercapacitor Electrode," Korean Chem. Eng. Res., 50(4), 754-757 (2012). https://doi.org/10.9713/kcer.2012.50.4.754
  10. Han, M. Y., Özyilmaz, B., Zhang, Y. and Kim, P., "Energy Band-Gap Engineering of Graphene Nanoribbons," Phys. Rev. Lett., 98, 206805(2007). https://doi.org/10.1103/PhysRevLett.98.206805
  11. Zhou, S. Y., Gweon, G.-H., Fedorov, A. V., First, P. N., Heer, W. A. D., Lee, D.-H., Guinea, F., Neto, A. H. C. and Lanzara, A., "Substrate-induced Bandgap Opening in Epitaxial Graphene," Nat. Mater., 6, 770(2007). https://doi.org/10.1038/nmat2003
  12. Guo, B., Fang, L., Zhang, B. and Gong, J. R., "Graphene Doping: A Review," Insciences J., 1, 80(2011).
  13. Fowler, J. D., Allen, M. J., Tung, V. C., Yang, Y., Kaner, R. B. and Weiller, B. H., "Practical Chemical Sensors from Chemically Derived Graphene," ACS nano, 3, 301(2009). https://doi.org/10.1021/nn800593m
  14. Pohl, H. A., "The Motion and Precipitation of Suspensoids in Divergent Electric Fields," J. Appl. Phys., 22, 869(1951). https://doi.org/10.1063/1.1700065
  15. Jones, T. B., Electromechanics of Particles, Cambridge University Press, New York, NY(1995).
  16. Velev, O. D., Gangwal, S. and Petsev, D. N., "Particle-localized AC and DC Manipulation and Electrikinetics," Annu. Rep. Prog. Chem., Sect. C, 105, 213(2009). https://doi.org/10.1039/b803015b
  17. Lee, G., Oh, S., Kim, B.-J. and Kim, J., "Improvement of Conductivity in Graphene by Ag Nanowires under a Non-Uniform Electric Field," ECS Solid State Letters, 3, M41(2014). https://doi.org/10.1149/2.0051412ssl
  18. Krupke, R., Hennrich, F., Löhneysen, H. V. and Kappes, M. M., "Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes," Science, 301, 344(2003). https://doi.org/10.1126/science.1086534
  19. Kim, T. H., Lee, S. Y., Cho, N. K., Seong, H. K., Choi, H. J., Jung, S. W. and Lee, S. K., "Dielectrophoretic Alignment of Gallium Nitride Nanowires (GaN NWs) for Use in Device Applications," Nanotechnology, 17, 3394(2006). https://doi.org/10.1088/0957-4484/17/14/009
  20. Vijayaraghavan, A., Sciascia, C., Dehm, S., Lombardo, A., Bonetti, A., Ferrari, A. C. and Krupke, R., "Dielectrophoretic Assembly of High-Density Arrays of Individual Graphene Devices for Rapid Screening," ACS Nano, 3, 1729(2009). https://doi.org/10.1021/nn900288d
  21. Gierhart, B. C., Howitt, D. G., Chen, S. J., Smith, R. L. and Collins, S. D., "Frequency Dependence of Gold Nanoparticle Superassembly by Dielectrophoresis," Langmuir, 23, 12450(2007). https://doi.org/10.1021/la701472y
  22. Papadakis, S. J., Gu, Z. and Gracias, D. H., "Dielectrophoretic Assembly of Reversible and Irreversible Metal Nanowire Networks and Vertically Aligned Arrays," Appl. Phys. Lett., 88, 233118 (2006). https://doi.org/10.1063/1.2209174
  23. Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S. and Geim, A. K., "Raman Spectrum of Graphene and Graphene Layers," Phys. Rev. Lett., 97, 187401(2006). https://doi.org/10.1103/PhysRevLett.97.187401
  24. Raza, H., Graphene Nanoelectronics-Metrology, Synthesis, Properties and Applications, Spinger, Iowa City, Iowa(2012).
  25. Gunes, F., Shin, H.-J., Biswas, C., Han, G. H., Kim, E. S., Chae, S. J., Choi, J.-Y. and Lee, Y. H., "Layer-by-Layer Doping of Few-Layer Graphene Film," ACS nano, 4, 4595(2010). https://doi.org/10.1021/nn1008808
  26. Kim, K. K., Reina, A., Shi, Y., Park, H., Li, L.-J., Lee, Y. H. and Kong, J., "Enhancing the Conductivity of Transparent Graphene Films Via Doping," Nanotechnology, 21, 285205(2010). https://doi.org/10.1088/0957-4484/21/28/285205
  27. Kwon, K. C., Choi, K. S. and Kim, S. Y., "Increased Work Function in Few-Layer Graphene Sheets via Metal Chloride Doping," Adv. Funct. Mater., 22, 4724(2012). https://doi.org/10.1002/adfm.201200997
  28. Schroder, D. K., Semiconductor material and device characterization, 3rd ed., Wiley Inter-Science, Hoboken, NJ(2006).