• Title/Summary/Keyword: oxide

Search Result 18,462, Processing Time 0.037 seconds

ReaxFF and Density Functional Theory Studies of Structural and Electronic Properties of Copper Oxide Clusters

  • Baek, Joo-Hyeon;Bae, Gyun-Tack
    • Journal of the Korean Chemical Society
    • /
    • v.64 no.2
    • /
    • pp.61-66
    • /
    • 2020
  • In this study, we investigate the structural and electronic properties of copper oxide clusters, CunOn (n = 9 - 15). To find the lowest energy structures of copper oxide clusters, we use ReaxFF and density functional theory calculations. We calculate many initial copper oxide clusters using ReaxFF quickly. Then we calculate the lowest energy structures of copper oxide clusters using B3LYP/LANL2DZ model chemistry. We examine the atomization energies per atom, average bond angles, Bader charges, ionization potentials, and electronic affinities of copper oxide clusters. In addition, the second difference in energies is investigated for relative energies of copper oxide clusters.

Current Characteristics in the Silicon Oxides (실리콘 산화막의 전류 특성)

  • Kang, C.S.;Lee, Jae Hak
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.10
    • /
    • pp.595-600
    • /
    • 2016
  • In this paper, the oxide currents of thin silicon oxides is investigated. The oxide currents associated with the on time of applied voltage were used to measure the distribution of voltage stress induced traps in thin silicon oxide films. The stress induced leakage currents were due to the charging and discharging of traps generated by stress voltage in the silicon oxides. The stress induced leakage current will affect data retention in memory devices. The oxide current for the thickness dependence of stress current and stress induced leakage currents has been measured in oxides with thicknesses between $109{\AA}$, $190{\AA}$, $387{\AA}$, and $818{\AA}$ which have the gate area $10^{-3}cm^2$. The oxide currents will affect data retention and the stress current, stress induced leakage current is used to estimate to fundamental limitations on oxide thicknesses.

Low Emissivity Property of Amorphous Oxide Multilayer (SIZO/Ag/SIZO) Structure

  • Lee, Sang Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.13-15
    • /
    • 2017
  • Low emissivity glass for high transparency in the visible range and low emissivity in the IR (infrared) range was fabricated and investigated. The multilayers were have been fabricated, and consisted of two outer oxide layers and a middle layer of Ag as a metal layer. Oxide layers were formed by rf sputtering and metal layers were formed using by an evaporator at room temperature. SiInZnO (SIZO) film was used as an oxide layer. The OMO (oxide-metaloxide) structures of SIZO/Ag/SIZO were analyzed by using transmittance, AFM (atomic force microscopye), and XRD (X-ray diffraction). The OMO multilayer structure was designed to investigate the effect of Ag layer thickness on the optical property of the OMO structure.

Effect of Hydrogen in the Gate Insulator on the Bottom Gate Oxide TFT

  • KoPark, Sang-Hee;Ryu, Min-Ki;Yang, Shin-Hyuk;Yoon, Sung-Min;Hwang, Chi-Sun
    • Journal of Information Display
    • /
    • v.11 no.3
    • /
    • pp.113-118
    • /
    • 2010
  • The effect of hydrogen in the alumina gate insulator on the bottom gate oxide thin film transistor (TFT) with an InGaZnO film as the active layer was investigated. TFT with more H-containing alumina films (TFT A) fabricated via atomic layer deposition using a water precursor showed higher stability under positive and negative bias stresses than that with less H-containing alumina deposited using ozone (TFT B). While TFT A was affected by the pre-vacuum annealing of GI, which resulted in $V_{th}$ instability under NBS, TFT B did not show a difference after the pre-vacuum annealing of GI. All the TFTs showed negative-bias-enhanced photo instability.

Characteristics of Poly-Oxide of New Sacrificial Layer for Micromachining (마이크로머시닝을 위한 새로운 희생층인 다결정-산화막의 특성)

  • Hong, Soon-Kwan;Kim, Chul-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.71-77
    • /
    • 1996
  • Considering that polycrystalline silicon, a structural material of the micromachining, is affected by a sacrificial oxide layer, the poly-oxide obtained by the thermal oxidation of polycrystalline silicon is newly proposed and estimated as the sacrificial oxide layer. The grain size of the polycrystalline silicon grown on the poly-oxide is larger than that of poly crystalline silicon grown on the conventional sacrificial oxide layer. As a result of XRD, increase of (111) textures and formation of additional (220) textures are observed on the polycrystaIline silicon deposited on the poly-oxide. Also, the polycrystalline silicon grown on the poly-oxide represents small and uniform stress.

  • PDF

Synthesis of the Terpolymers of Propylene Oxide, Cyclohexene Oxide, and Carbon dioxide (Propylene Oxide와 Cyclohexene Oxide와 CO2의 삼원 공중합체의 합성)

  • Lee, Yoon-Bae;Sung, Un-Gyung;Park, Hee-Kyong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.1027-1031
    • /
    • 2011
  • In order to use carbon dioxide, one of the green house gases, terpolymers have been synthesized from propylene oxide, cyclohexene oxide, and carbon dioxide with zinc glutarate as catalyst. The polymers have been investigated with FT-IR, $^1H$-NMR, DSC. The glass transition temperatures of terpolymers are dependendent upon mass ratio of the poly(alkylene carbonate by Fox equation.

Miniature J-T cryocooler using argon and nitrous oxide mixture

  • Hwang, Gyu-Wan;Jeong, Sang-Kwon
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.4
    • /
    • pp.38-42
    • /
    • 2008
  • Miniature J-T cryocooler using nitrogen or argon has been widely adopted in cooling infrared sensor for space/military application and cryosurgery. Argon or nitrogen, however, has relatively low specific cooling power compared to nitrous oxide, but the ultimate operating temperature is much lower than nitrous oxide. On the other hand, nitrous oxide has large specific cooling power, but the operating temperature is limited to its boiling point (>183K). To compromise the different characteristics of these gases, the performance of miniature J-T cryocooler using argon and nitrous oxide mixture is investigated in this paper. Three different compositions of mixture (25/75, 50/50, and 75/25 molar fraction) are blended and tested. The results are compared with the experiments of pure argon and pure nitrous oxide. The experimental results show some encouraging potentiality of mixed refrigerant J-T cryocooler. The critical clogging problem, however, was observed with argon and nitrous oxide mixture, and the lowest achievable temperature with this mixture was limited to the freezing point of nitrous oxide. The paper discusses detailed clogging process of the mixture and suggests an alternative.

Beryllium oxide utilized in nuclear reactors: Part I: Application history, thermal properties, mechanical properties, corrosion behavior and fabrication methods

  • Ming-dong Hou;Xiang-wen Zhou;Bing Liu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4393-4411
    • /
    • 2022
  • In recent years, beryllium oxide has been widely utilized in multiple compact nuclear reactors as the neutron moderator, the neutron reflector or the matrix material with dispersed nuclear fuels due to its prominent properties. In the past 70 years, beryllium oxide has been studied extensively, but rarely been systematically organized. This article provides a systematic review of the application history, thermal properties, mechanical properties, corrosion behavior and fabrication methods of beryllium oxide. Data from previous literature are extracted and sorted out, and all of these original data are attached as the supplementary material, so that subsequent researchers can utilize this paper as a database for beryllium oxide research in reactor design or simulation analysis, etc. In addition, this review article also attempts to point out the insufficiency of research on beryllium oxide, and the possible key research areas about beryllium oxide in the future.

Role of Exogenous Nitric Oxide Generated through Microwave Plasma Activate the Oxidative Signaling Components in Differentiation of Myoblast cells into Myotube

  • Kumar, Naresh;Shaw, Priyanka;Attri, Pankaj;Uhm, Han Sup;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.158-158
    • /
    • 2015
  • Myoblast are myogenic precursors that proliferate, activate, and differentiate on muscle injury to sustain the regenerative capacity of skeletal muscle; The neuronal isoform of nitric oxide synthase (nNOS, termed also NOS-I) is expressed in normal adult skeletal muscle, suggesting important functions for Nitric oxide (NO) in muscle biology1,2,3. However, the expression and subcellular localization of NO in muscle development and myoblast differentiation are largely unknown. In this study, we examined effects of the nitric oxide generated by a microwave plasma torch, on proliferation/differentiation of rat myoblastic L6 cells. Experimental data pertaining to nitric oxide production are presented in terms of the oxygen input in units of cubic centimetres per minute. The various levels of nitric oxide are observed depending on the flow rate of nitrogen gas, the ratio of oxygen gas, and the microwave power4. In order to evaluate the potential of nitric oxide as an activator of cell differentiation, we applied nitric oxide generated from the microwave plasma torch to L6 skeletal muscles. Differentiation of L6 cells into myotubes was significantly enhanced the differentiation after nitric oxide treatment. Nitric oxide treatment also increase the expression of myogenesis marker proteins and mRNA level, such as myogenin and myosin heavy chain (MHC), as well as cyclic guanosine monophosphate (cGMP), However during the myotube differentiation we found that NO activate oxidative stress signaling erks expression. Therefore, these results establish a role of NO and cGMP in regulating myoblast differentiation and elucidate their mechanism of action, providing a direct link with oxidative stress signalling, which is a key player in myogenesis. Based on these findings, nitric oxide generated by plasma can be used as a possible activator of cell differentiation and tissue regeneration.

  • PDF

Effect of the Formation of an Initial Oxide Layer on the Fabrication of the Porous Aluminium Oxide (초기 산화 피막의 형성이 다공성 알루미나 막 제작에 미치는 영향)

  • Park, Young-Ok;Kim, Chul-Sung;Kouh, Tae-Joon
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.2
    • /
    • pp.79-83
    • /
    • 2008
  • We have investigated the effect of the formation of an initial oxide layer on the fabrication of the porous aluminium oxide. The porous aluminium oxide was fabricated by two-step anodization process with a electropolished aluminium foil. Before the first anodization step, the initial oxide layer with thickness of 10 nm was formed under the applied voltage of 1 V and later the anodization was continued under 40 V using oxalic acid solution. With the formation of the initial oxide layer, the anodization process was stable and the anodization current was constant throughout the process. In case of the absence of the initial oxide layer, the anodization was very unstable and the continuous increase in the anodization current was observed. This indicates the formation of the initial oxide layer on the aluminium surface prevents the burning of the surface due to the nonuniform distribution of the applied electric field, and allows the stable anodization process required for the porous aluminium oxide.