Browse > Article
http://dx.doi.org/10.5012/jkcs.2020.64.2.61

ReaxFF and Density Functional Theory Studies of Structural and Electronic Properties of Copper Oxide Clusters  

Baek, Joo-Hyeon (Ungcheon Middle School)
Bae, Gyun-Tack (Department of Chemistry Education, Chungbuk National University)
Publication Information
Abstract
In this study, we investigate the structural and electronic properties of copper oxide clusters, CunOn (n = 9 - 15). To find the lowest energy structures of copper oxide clusters, we use ReaxFF and density functional theory calculations. We calculate many initial copper oxide clusters using ReaxFF quickly. Then we calculate the lowest energy structures of copper oxide clusters using B3LYP/LANL2DZ model chemistry. We examine the atomization energies per atom, average bond angles, Bader charges, ionization potentials, and electronic affinities of copper oxide clusters. In addition, the second difference in energies is investigated for relative energies of copper oxide clusters.
Keywords
Copper oxide clusters; Density functional theory; Particulate matter; ReaxFF; Molecular dynamics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Musselman, K. P.; Marin, A.; Schmidt-Mende, L.; Mac-Manus-Driscoll, J. L. Adv. Funct. Mater. 2012, 22, 2202.   DOI
2 Kim, S.; Hong, K.; Kim, K.; Lee, I.; Lee, J.-L. J. Mater. Chem. 2012, 22, 2039.   DOI
3 Barreca, D.; Fornasiero, P.; Gasparotto, A.; Gombac, V.; Maccato, C.; Montini, T.; Tondello, E. ChemSusChem 2009, 2, 230.   DOI
4 Park, J. C.; Kim, J.; Kwon, H.; Song, H. Adv. Mater. 2009, 21, 803.   DOI
5 Shirk, J. S.; Bass, A. M. J. Chem. Phys. 1970, 52, 1894.   DOI
6 Tevault, D. E.; Mowery, R. L.; Marco, R. A. D.; Smardzewski, R. R. J. Chem. Phys. 1981, 74, 4342.   DOI
7 Bagus, P. S.; Nelin, C. J.; Charles W. Bauschlicher, J. J. Chem. Phys. 1983, 79, 2975.   DOI
8 Ozin, G. A.; Mitchell, S. A.; Garcia-Prieto, J. J. Am. Chem. Soc. 1983, 105, 6399.   DOI
9 Igel, G.; Wedig, U.; Dolg, M.; Fuentealba, P.; Preuss, H.; Stoll, H.; Frey, R. J. Chem. Phys. 1984, 81, 2737.   DOI
10 Bondybey, V. E.; English, J. H. J. Phys. Chem. 1984, 88, 2247.   DOI
11 Howard, J. A.; Sutcliffe, R.; Mile, B. J. Phys. Chem. 1984, 88, 4351.   DOI
12 Kasai, P. H.; Jones, P. M. J. Phys. Chem. 1986, 90, 4239.   DOI
13 Madhavan, P. V.; Newton, M. D. J. Chem. Phys. 1985, 83, 2337.   DOI
14 Langhoff, S. R.; Bauschlicher Jr, C. W. Chem. Phys. Lett. 1986, 124, 241.   DOI
15 Polak, M. L.; Gilles, M. K.; Ho, J.; Lineberger, W. C. J. Phys. Chem. 1991, 95, 3460.   DOI
16 Wu, H.; Desai, S. R.; Wang, L.-S. J. Chem. Phys. 1995, 103, 4363.   DOI
17 Wang, L.-S.; Wu, H.; Desai, S. R.; Lou, L. Phys. Rev. B 1996, 53, 8028.   DOI
18 Chertihin, G. V.; Andrews, L.; Bauschlicher, C. W. J. Phys. Chem. A 1997, 101, 4026.   DOI
19 Hrusak, J.; Koch, W.; Schwarz, H. J. Chem. Phys. 1994, 101, 3898.   DOI
20 Deng, K.; Yang, J.; Zhu, Q. J. Chem. Phys. 2000, 113, 7867.   DOI
21 Bae, G.-T.; Dellinger, B.; Hall, R. W. J. Phys. Chem. A 2011, 115, 2087.   DOI
22 Massobrio, C.; Pouillon, Y. J. Chem. Phys. 2003, 119, 8305.   DOI
23 Pouillon, Y.; Massobrio, C. Chem. Phys. Lett. 2002, 356, 469.   DOI
24 Pouillon, Y.; Massobrio, C. Appl. Surf. Sci. 2004, 226, 306.   DOI
25 Bae, G.-T. Bull. Korean Chem. Soc. 2016, 37, 638.   DOI
26 van Duin, A. C. T.; Bryantsev, V. S.; Diallo, M. S.; Goddard, W. A.; Rahaman, O.; Doren, D. J.; Raymand, D.; Hermansson, K. J. Phys. Chem. A 2010, 114, 9507.   DOI
27 Rahaman, O.; van Duin, A. C. T.; Bryantsev, V. S.; Mueller, J. E.; Solares, S. D.; Goddard, W. A.; Doren, D. J. The Journal of Physical Chemistry A 2010, 114, 3556.   DOI
28 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian, Inc.: Wallingford, CT, USA, 2009.
29 Henkelman, G.; Arnaldsson, A.; Jonsson, H. Comput. Mater. Sci. 2006, 36, 354.   DOI