DOI QR코드

DOI QR Code

Beryllium oxide utilized in nuclear reactors: Part I: Application history, thermal properties, mechanical properties, corrosion behavior and fabrication methods

  • Ming-dong Hou (Institute of Nuclear and New Energy Technology, Tsinghua University) ;
  • Xiang-wen Zhou (Institute of Nuclear and New Energy Technology, Tsinghua University) ;
  • Bing Liu (Institute of Nuclear and New Energy Technology, Tsinghua University)
  • Received : 2022.03.04
  • Accepted : 2022.07.21
  • Published : 2022.12.25

Abstract

In recent years, beryllium oxide has been widely utilized in multiple compact nuclear reactors as the neutron moderator, the neutron reflector or the matrix material with dispersed nuclear fuels due to its prominent properties. In the past 70 years, beryllium oxide has been studied extensively, but rarely been systematically organized. This article provides a systematic review of the application history, thermal properties, mechanical properties, corrosion behavior and fabrication methods of beryllium oxide. Data from previous literature are extracted and sorted out, and all of these original data are attached as the supplementary material, so that subsequent researchers can utilize this paper as a database for beryllium oxide research in reactor design or simulation analysis, etc. In addition, this review article also attempts to point out the insufficiency of research on beryllium oxide, and the possible key research areas about beryllium oxide in the future.

Keywords

Acknowledgement

This work was funded by the National S&T Major Project (Grant No. ZX06901) and Key R&D Plan of Shandong Province (major scientific and technological innovation project, 2020CXGC010306).

References

  1. I.E. Cooper, A Study of the Methods of Extracting Beryllia from Beryl, University of Illinois-Urbana, 1920 (Undergraduate thesis).
  2. L.W. Mckeehan, The crystal structure of beryllium and of beryllium oxide, Proc. Natl. Acad. Sci. U.S.A. 8 (9) (1922) 270-274, https://doi.org/10.1073/pnas.8.9.270.
  3. M.L.E. Oliphant, L. Rutherford, Experiments on the transmutation of elements by protons, Proc. Roy. Soc. A141 (1933) 259-281, https://doi.org/10.1098/rspa.1933.0117.
  4. C.B. Sawyer, B.J. Kjellgren, Newer developments in beryllium, Ind. Eng. Chem. 30 (5) (1938) 501-505. https://pubs.acs.org/doi/pdf/10.1021/ie50341a006.
  5. H.E. White, R.M. Shremp, Beryllium oxide: I, J. Am. Ceram. Soc. 22 (1939) 185-189, https://doi.org/10.1111/j.1151-2916.1939.tb19449.x.
  6. H.E. White, R.M. Shremp, C.B. Sawyer, Beryllium oxide refractories: II, J. Am. Ceram. Soc. 23 (1940) 157-159, https://doi.org/10.1111/j.1151-2916.1940.tb14227.x.
  7. H.C. Urey, The Heavy Water-Slurry Pile, Report A-743, Columbia University, 1943, pp. 2R-449R. https://www.osti.gov/servlets/purl/4374663.
  8. F. Daniels, Suggestions for a High-Temperature Pebble Pile, Report MUC-FD8, Oak Ridge National Laboratory, 1944, https://doi.org/10.2172/4359817.
  9. M.T. Simnad, The early history of high-temperature helium gas-cooled nuclear power reactors, Energy 16 (1-2) (1991) 25-32, https://doi.org/10.1016/0360-5442(91)90084-Y.
  10. W.D. Manly, Utilization of BeO in reactors, J. Nucl. Mater. 14 (1964) 3-18, https://doi.org/10.1016/0022-3115(64)90158-8.
  11. L.R. Hafstad, Reactors, Sci. Am. 184 (4) (1951) 43-51. https://www.jstor.org/stable/24945141. https://doi.org/10.1038/scientificamerican0451-43
  12. B.C. Hacker, Whoever Heard of Nuclear Ramjets? Project Pluto, 1957-1964, vol. 1, 1995, pp. 85-98. Icon. http://www.jstor.org/stable/23786203.
  13. A.M. Weinberg, Aircraft Nuclear Propulsion Project, Report ORNL-629, Oak Ridge National Laboratory, 1950, https://doi.org/10.2172/1232662.
  14. E.S. Bettis, W.B. Cottrell, E.R. Mann, J.L. Meem, G.D. Whitman, The aircraft reactor experiment-operation, Nucl. Sci. Eng. 2 (6) (1957) 841-853, https://doi.org/10.13182/NSE57-A35497.
  15. W.K. Ergen, A.D. Callihan, C.B. Mills, D. Scott, The aircraft reactor experimentphysics, Nucl. Sci. Eng. 2 (6) (1957) 826-840, https://doi.org/10.13182/NSE57-A35496.
  16. W.D. Manly, G.M. Adamson, J.H. Coobs, J.H. DeVan, D.A. Douglas, E.E. Hoffman, P. Patriarca, Aircraft Reactor Experiment Metallurgical Aspects, Report ORNL-2349, Oak Ridge National Laboratory, 1958, https://doi.org/10.2172/4227617.
  17. A.J. Rothman, Properties of BeO Ceramics and Their Application in a Nuclear Propulsion System (Pluto), Report UCRL-6743, Lawrence Radiation Laboratory, University of California, 1962. https://www.osti.gov/biblio/4724669.
  18. A.J. Rothman, Beryllium Oxide for Nuclear Propulsion Application, Report UCRL-7428, Lawrence Radiation Laboratory, University of California, 1963. https://www.osti.gov/biblio/4126131.
  19. W.C. Moore, The Experimental Beryllium Oxide Reactor. Maritime GasCooled Reactor Program, Report GA-2385, General Atomic Division, General Dynamic Corporation, 1961, https://doi.org/10.2172/4826933.
  20. K.A. Trickett, Maritime Gas-Cooled Reactor Program. A Review of the Maritime Gas-Cooled Reactor Program, Report GA-2603, General Atomic Division, General Dynamic Corporation, 1961, https://doi.org/10.2172/4810737.
  21. D.F. Putnam, I.H. Kabler, MGCR-Carbon Dioxide Cycle Studies, Report MGCRP-177, General Atomic Division, General Dynamic Corporation, 1958. https://www.osti.gov/biblio/4091863.
  22. J.W. Blakley, J.S. Alcorn, L.G. DelValle, P.W. Healy, D.H. Moran, W.S. Scott, Army Gas-Cooled Reactors System Program. Transportability Studies, ML-1 Nuclear Power Plant, Report Ido-28555, Aerojet-General Nucleonics, 1960, https://doi.org/10.2172/4122663.
  23. W.H. Roberts, The Australian high temperature gas-cooled reactor feasibility study, J. Nucl. Mater. 14 (1964) 29-40, https://doi.org/10.1016/0022-3115(64)90160-6.
  24. H. Kronberger, The role of dispersed fuels in the future development of the advanced gas-cooled reactor, J. Nucl. Mater. 14 (1964) 41-48, https://doi.org/10.1016/0022-3115(64)90161-8.
  25. R. Hecker, W. Rausch, R. Schulten, Development of High Temperature Thermal Reactors in Germany, Report EUR 3493e, Germany, 1966. http://aei.pitt.edu/91270/1/3493.pdf.
  26. A. Bicevskis, E.W. Hesse, D.J. Mercer, Thorium fuel cycle for a beryllium oxide pebble-bed reactor, Thorium Fuel Cycle Proc. (1968) 129-155.
  27. P.H. Horton, W.J. Kurzeka, Zirconium Hydride Reactor Control Reflector Systems: Summary Report, Report AI-AEC-13078, Atomics International Division, 1972, https://doi.org/10.2172/4374595.
  28. D.J. Cockeram, SNAP 2, 8, and 10A reactor programs progress report, Prog. Astronautics Rocketry 16 (1966) 393-415, https://doi.org/10.1016/B978-1-4832-3056-6.50021-9.
  29. W. Mayo, E. Lantz, Calculated Power Distribution of a Thermionic, Beryllium Oxide Reflected, Fast-Spectrum Reactor, NASA TM X-2838, National Aeronautics and Space Administration, 1973. https://ntrs.nasa.gov/citations/19730019931.
  30. H.W. Davison, T.A. Kircbgessner, R.H. Springborn, H.G. Yacobucci, AdvancedPower-Reactor Design Concepts and Performance Characterristics, NASA TM X-2957, National Aeronautics and Space Administration, 1974. https://ntrs.nasa.gov/citations/19740006253.
  31. D. Buden, Nuclear Reactors for Space Electric Power, Report LA-7290-SR, Los Alamos Scientific Laboratory, 1978, https://doi.org/10.2172/6864670.
  32. J.V. Walker, J.A. Reuscher, P.S. Pickard, Design and Proposed Utilization of the Sandia Annular Core Research Reactor (ACRR), Sandia Laboratory, 1979. https://www.osti.gov/servlets/purl/6117577.
  33. A.M. Perry, A.M. Weinberg, Thermal breeder reactors, Annu. Rev. Nucl. Sci. 22 (1972) 317-354, https://doi.org/10.1146/annurev.ns.22.120172.001533.
  34. B. Vrillon, F. Carre, E. Proust, Space Nuclear Power Studies in France-A New Concept of Particle Bed Reactor, Report CEA-CONF-9696, CEA Centre d'Etudes Nucleaires de Saclay, 1988. https://inis.iaea.org/search/search.aspx?orig_q=RN:20046218.
  35. D.K. Mohapatra, E. Radha, P. Mohanakrishnan, Theoretical and experimental investigations of reactor parameters in a U-233 fuelled research reactor, Ann. Nucl. Energy 31 (2) (2004) 197-212, https://doi.org/10.1016/S0306-4549(03)00219-6.
  36. S. Usha, R.R. Ramanarayanan, P. Mohanakrishnan, R.P. Kapoor, Research reactor KAMINI, Nucl. Eng. Des. 236 (7-8) (2006) 872-880, https://doi.org/10.1016/j.nucengdes.2005.09.033.
  37. R. Sanchez, T. Grove, D. Hayes, J. Goda, G. Mckenzie, J. Hutchinson, T. Cutler, J. Bounds, J. Walker, W. Myers, K. Smith, Kilowatt reactor using stirling TechnologY (KRUSTY) component-critical experiments, Nucl. Technol. 206 (2020) 56-67, https://doi.org/10.1080/00295450.2020.1722553.
  38. P. McClure, D. Poston, M. Gibson, C. Bowmn, J. Creasy, KiloPower Space Reactor Concept-Reactor Materials Study, Report LA-UR-14-23402, Los Alamos National Laboratory, 2014, https://doi.org/10.2172/1131780.
  39. J.C. King, M.S. EI-Genk, Submersion-subcritical safe space (S4) reactor, Nucl. Eng. Des. 236 (17) (2006) 1759-1777, https://doi.org/10.1016/j.nucengdes.2005.12.010.
  40. I.V. Dulera, R.K. Sinha, High temperature reactors, J. Nucl. Mater. 383 (1-2) (2008) 183-188, https://doi.org/10.1016/j.jnucmat.2008.08.056.
  41. S. Dawahra, K. Khattab, G. Saba, Investigation of BeO as a reflector for the low power research reactor, Prog. Nucl. Energy 81 (2015) 1-5, https://doi.org/10.1016/j.pnucene.2014.12.001.
  42. Z. Gholamzadeh, F. Khoshahval, M.A. Mozafari, A.J. Vaziri, Computational investigation of Tehran research reactor graphite reflector replacement with Be, BeO or D2O and its impacts on thermal neutron flux enhancement, Int. J. Nucl. Energy Sci. Technol. 13 (4) (2019) 350-371, https://doi.org/10.1504/ijnest.2019.106054.
  43. M.J. Naramore, High Thermal Conductivity UO2-BeO Nulcear Fuel: Neutronic Performance Assessments and Overview of Fabrication, Texas A & M University, 2010. Master's thesis, https://hdl.handle.net/1969.1/153193.
  44. C. Garcia, Sintering and Thermal Behavior of Uranium Dioxide in Beryllium Oxide Matrix, Texas A & M University, 2014. Master's thesis, https://hdl.handle.net/1969.1/158902.
  45. T. Zahradka, R. Skoda, Cost saving when using enhanced conductivity nuclear fuel containing BeO in WWER-1000 reactors, in: Proceedings of the 2014 22nd International Conference on Nuclear Engineering, 2014, https://doi.org/10.1115/ICONE22-30901. Prague, Czech Republic.
  46. C.S. Handwerk, M.J. Driscoll, P. Hejzlar, Optimized core design of a supercritical carbon dioxide-cooled fast reactor, Nucl. Technol. 164 (3) (2008) 320-336, https://doi.org/10.13182/NT08-A4030.
  47. D.M. Camarano, F.A. Mansur, A.M.M. Santos, W.B. Ferraz, Increase of thermal conductivity of uranium dioxide nuclear fuel pellets with beryllium oxide addition, 22. CBECIMAT: Brazilian congress of engineering and materials science, Natal, RN Brazil, https://inis.iaea.org/search/search.aspx?orig_q=RN:48076753, 2016.
  48. V.K. Mehta, P. McClure, D. Kotlyar, Selection of a space reactor moderator using lessons learned from SNAP and ANP programs, in: AIAA Propulsion and Energy 2019 Forum, 2019, https://doi.org/10.2514/6.2019-4451. Indianapolis, United States.
  49. I. Pioro, P. Kirillov, Generation IV nuclear reactors as a basis for future electricity production in the world, Mater. Process. Energy (2013) 818-830.
  50. H.A. Wriedt, The Be-O (Beryllium-Oxygen) system, Bull. Alloy Phase Diagrams 6 (1985) 553-558, https://doi.org/10.1007/bf02887158.
  51. R.C. Ropp, Group 16 (O, S, Se, Te) alkaline earth compounds, in: R.C. Ropp (Ed.), Encyclopedia of the Alkaline Earth Compounds, Elsevier, 2013, pp. 105-197, https://doi.org/10.1016/b978-0-444-59550-8.00003-x.
  52. D.K. Smith, C.F. Cline, The crystal structure of beta beryllia, J. Nucl. Mater. 14 (1964) 237-238, https://doi.org/10.1016/0022-3115(64)90183-7.
  53. K. Kobashi, Heteroepitaxial growth on cBN, Ni, and other substrates, in: K. Kobashi (Ed.), Diamond Films, Elsevier, 2005, pp. 91-118, https://doi.org/10.1016/B978-008044723-0/50010-6.
  54. B. Bellamy, T.W. Baker, D.T. Livey, The lattice parameter and density of beryllium oxide determined by precise X-ray methods, J. Nucl. Mater. 6 (1) (1962) 1-4, https://doi.org/10.1016/0022-3115(62)90210-6.
  55. R.A. Belyaev, Beryllium Oxide: Properties and Applications, Report AEC-Tr6175, United States Atomic Energy Commission, 1964.
  56. K.K. Kelley, Critical evaluation of high-temperature heat capacities of inorganic compounds, US. Bur. Mines, Bull. No. 476 (1949).
  57. K.K. Kelley, The specific heats at low temperatures of beryllium oxide and beryllium orthosilicate (phenacite), J. Am. Chem. Soc. 61 (5) (1939) 1217-1218, https://doi.org/10.1021/ja01874a059.
  58. J.J. Petrovic, C.L. Haertling, Beryllium Oxide (BeO) Handbook, Report LA-UR20-24561, Los Alamos National Laboratory, 2020, https://doi.org/10.2172/1635499.
  59. S.C. Carniglia, J.E. Hove, Fabrication and properties of dense beryllium oxide, J. Nucl. Mater. 4 (2) (1961) 165-176, https://doi.org/10.1016/0022-3115(61)90125-8.
  60. A.C. Victor, T.B. Douglas, Thermodynamic properties of magnesium oxide and beryllium oxide from 298 to 1,200 K, J. Res. Natl. Bur. Stand. A. Phys. Chem. 67A (4) (1963) 325-329. https://doi.org/10.6028/jres.067A.034
  61. Y.N. Makurin, I.R. Shein, M.A. Gorbunova, V.S. Kiiko, A.L. Ivanovskii, Firstprinciple quantum-chemical calculations of several thermomechanical parameters of beryllium ceramics, Refract. Ind. Ceram. 47 (5) (2006) 310-313, https://doi.org/10.1007/s11148-006-0115-9.
  62. C.F. Cline, H.L. Dunegan, G.W. Henderson, Elastic constant of hexagonal BeO, ZnS, and CdSe, J. Appl. Phys. 38 (4) (1967) 1944-1948, https://doi.org/10.1063/1.1709787.
  63. J.J. Quinn, K.S. Yi, Solid State Physics: Principles and Modern Applications, Springer, Dordrecht Heidelberg London New York, 2009, https://doi.org/10.1007/978-3-540-92231-5.
  64. M. Burk, Thermal conductivity of beryllia ceramics from -200 ℃ to 150 ℃, J. Am. Ceram. Soc. 46 (3) (1963) 150-151, https://doi.org/10.1111/j.1151-2916.1963.tb11700.x.
  65. R.E. Taylor, Thermal conductivity and expansion of beryllia at high temperatures, J. Am. Ceram. Soc. 45 (2) (1962) 74-78, https://doi.org/10.1111/j.1151-2916.1962.tb11083.x.
  66. M. Adams, Thermal conductivity: III, prolate spheroidal envelope method, J. Am. Ceram. Soc. 37 (2) (1954) 74-79, https://doi.org/10.1111/j.1551-2916.1954.tb20102.x.
  67. W.D. Kingery, Thermal conductivity: XII, temperature dependence of conductivity for single-phase ceramics, J. Am. Ceram. Soc. 38 (7) (1955) 251e255, https://doi.org/10.1111/j.1151-2916.1955.tb14940.x.
  68. J. Francl, W.D. Kingery, Thermal conductivity: IV, apparatus for determining thermal conductivity by a comparative method, J. Am. Ceram. Soc. 37 (2) (1954) 80-84, https://doi.org/10.1111/j.1551-2916.1954.tb20103.x.
  69. M. McQuarrie, Thermal conductivity: VII, analysis of variation of conductivity with temperature for Al2O3, BeO, and MgO, J. Am. Ceram. Soc. 37 (2) (1954) 91-95, https://doi.org/10.1111/j.1551-2916.1954.tb20106.x.
  70. H. Luo, Q. Wei, Z.M. Yu, Y. Wang, H. Long, Y. Xie, Effect of film thickness on the temperature dependence of thermal conductivity for diamond/BeO composites, Ceram. Int. 41 (9) (2015) 12052-12057, https://doi.org/10.1016/j.ceramint.2015.06.020. Part B.
  71. B.N. Rath, S.J. Ghanwat, S. Kaity, C. Danani, R.V. Kulkarni, V.D. Alur, D. Sathiyamoorthy, S. Anantharaman, Thermal conductivity of composites of beryllia and liythium titanate, J. Mater. Eng. Perform. 22 (11) (2013) 3455-3460, https://doi.org/10.1007/s11665-013-0606-z.
  72. A.G. Kharlamov, Thermal conductivity of beryllium oxide in the 1000-2000 C Range, Sov. Energy 15 (6) (1963) 1313-1315, https://doi.org/10.1007/bf01115920.
  73. V.S. Kiiko, V.Y. Vaispapir, Thermal conductivity and prospects for application of BeO ceramic in electronics, Glass Ceram 71 (11-12) (2015) 387-391, https://doi.org/10.1007/s10717-015-9694-6.
  74. G.P. Akishin, S.K. Turnaev, V.Y. Vaispapir, M.A. Gorbunova, Y.N. Makurin, V.S. Kiiko, A.L. Ivanovskii, Thermal conductivity of beryllium oxide ceramic, Refract. Ind. Ceram. 50 (6) (2009) 465-468, https://doi.org/10.1007/s11148-010-9239-z.
  75. M.B. Bebek, C.M. Stanley, T.M. Gibbons, S.K. Estreicher, Temperature dependence of phonon-defect interactions: phonon scattering vs. phonon trapping, Sci. Rep. 6 (2016), 32150, https://doi.org/10.1038/srep32150.
  76. A.W. Pryor, Thermal conductivity at low temperature of neutron-irradiated BeO, J. Nucl. Mater. 14 (1964) 208-219, https://doi.org/10.1016/0022-3115(64)90180-1.
  77. G.A. Slack, Nonmetallic crystals with high thermal conductivity, J. Phys. Chem. Solids. 34 (2) (1973) 321-335, https://doi.org/10.1016/0022-3697(73)90092-9.
  78. Y.M. Kozlovskii, S.V. Stankus, Thermal expansion of beryllium oxide in the temperature interval 20-1550 ℃, High Temp 52 (4) (2014) 536-540, https://doi.org/10.1134/s0018151x1403016x.
  79. R.W. Swindeman, Thermal shock tests on beryllia, J. Nucl. Mater. 14 (1964) 404-415, https://doi.org/10.1016/0022-3115(64)90205-3.
  80. E.S. Lukin, D.N. Poluboyarinov, Some thermomechanical properties of pure oxide ceramics, Refractories 4 (1963) 347-352, https://doi.org/10.1007/BF01285119.
  81. R.E. Fryxell, B.A. Chandler, Creep, strength, expansion, and elastic moduli of sintered BeO as a function of grain size, porosity, and grain orientation, J. Am. Ceram. Soc. 47 (1964) 283-291, https://doi.org/10.1111/j.1151-2916.1964.tb14417.x.
  82. J.D. Patterson, B.C. Bailey, Solid-State Physics: Introduction to the Theory, third ed., Springer International Publishing AG, Switzerland, 2018 https://doi.org/10.1007/978-3-319-75322-5.
  83. H. Iwanaga, A. Kunishige, S. Takeuchi, Anisotropic thermal expansion in wurtzite-type crystals, J. Mater. Sci. 35 (2000) 2451-2454, https://doi.org/10.1023/A:1004709500331.
  84. B. Schwartz, Beryllia, its Physical Properties at Elevated Temperatures, Report 1083, ATI-210826, Massachusetts Institute of Technology, 1952.
  85. J. Lillie, Some Properties of Beryllium Oxide, Report UCRL-6457, Lawrence Radiation Laboratory, 1961, https://doi.org/10.2172/4019213.
  86. R.M. Spriggs, Effect of open and closed pores on elastic moduli of polycrystalline alumina, J. Am. Ceram. Soc. 45 (9) (1962) 454, https://doi.org/10.1111/j.1151-2916.1962.tb11192.x.
  87. D.P.H. Hasselman, On porosity dependence of elastic moduli of polycrystalline refractory materials, J. Am. Ceram. Soc. 45 (9) (1962) 452-453, https://doi.org/10.1111/j.1151-2916.1962.tb11191.x.
  88. B.A. Chandler, R.E. Fryxell, Physical Properties of Sintered BeO as Influenced by Microstructure, Report TM-63-5-4, General Electric, 1963, https://doi.org/10.2172/4690106.
  89. J.J. Gangler, Some physical properties of eight refractory oxides and carbides, J. Am. Ceram. Soc. 33 (1950) 367-374, https://doi.org/10.1111/j.1151-2916.1950.tb14155.x.
  90. I.Y. Guzman, D.N. Poluboynarinov, Some properties of porous ceramics made of beryllium oxide, Refractories 3 (1962) 347-351, https://doi.org/10.1007/BF01342817.
  91. S.C. Carniglia, R.E. Johnson, A.C. Hott, G.G. Bentle, Hot pressing for nuclear applications of BeO; process, product, and properties, J. Nucl. Mater. 14 (1964) 378-394, https://doi.org/10.1016/0022-3115(64)90203-X.
  92. G.G. Bentle, K.T. Miller, Dislocations, slip, and fracture in BeO single crystals, J. Appl. Phys. 38 (1967) 4248-4257, https://doi.org/10.1063/1.1709112.
  93. M.K. Ferber, P.F. Becher, Static fatigue behavior of polycrystalline beryllia, J. Am. Ceram. Soc. 73 (7) (1990) 2038-2046, https://doi.org/10.1111/j.1151-2916.1990.tb05264.x.
  94. G.G. Bentle, R.M. Kniefel, Brittle and plastic behavior of hot-pressed BeO, J. Am. Ceram. Soc. 48 (11) (1965) 570-577, https://doi.org/10.1111/j.1151-2916.1965.tb14674.x.
  95. K.D. Reeve, Fabrication and structure of beryllium oxide-based fuels, J. Nucl. Mater. 14 (1964) 435-443, https://doi.org/10.1016/0022-3115(64)90209-0.
  96. F.P. Knudsen, Dependence of mechanical strength of brittle polycrystalline specimens on porosity and grain size, J. Am. Ceram. Soc. 42 (8) (1959) 376-387, https://doi.org/10.1111/j.1151-2916.1959.tb13596.x.
  97. C. Hyde, J.F. Quirk, W.H. Duckworth, Preparation of Dense Beryllium Oxide, Report BMI-1020, Battelle Memorial Institute, Ohio, 1955.
  98. D.A. Krohn, D.R. Larson, D.P.H. Hasselman, Comparison of thermal-stress resistance of polycrystalline Al2O3 and BeO, J. Am. Ceram. Soc. 56 (9) (1973) 490-491, https://doi.org/10.1111/j.1151-2916.1973.tb12532.x.
  99. R.R. Vandervoort, W.L. Barmore, Compressive creep of polycrystalline beryllium oxide, J. Am. Ceram. Soc. 46 (4) (1963) 180-184, https://doi.org/10.1111/j.1151-2916.1963.tb11711.x.
  100. R. Chang, High temperature creep and anelastic phenomena in polycrystalline refractory oxides, J. Nucl. Mater. 1 (2) (1959) 174-181, https://doi.org/10.1016/0022-3115(59)90050-9.
  101. W.L. Barmore, R.R. Vandervoort, High-temperature plastic deformation of polycrystalline beryllium oxide, J. Am. Ceram. Soc. 48 (10) (1965) 499-505, https://doi.org/10.1111/j.1151-2916.1965.tb14648.x.
  102. W.L. Barmore, R.R. Vandervoort, High-temperature creep and dislocation etch pits in polycrystalline beryllium oxide, J. Am. Ceram. Soc. 50 (6) (1967) 316-320, https://doi.org/10.1111/j.1151-2916.1967.tb15117.x.
  103. D.T. Livey, Beryllium oxide, in: A.M. Alper (Ed.), Magnesia, Alumina, Beryllia Ceramics: Fabrication, Characterization and Properties: High Temperature Oxides Part III, Academic Press Inc., New York, 1970, pp. 1-52, https://doi.org/10.1016/B978-0-12-053303-9.50009-5.
  104. G. Vasudevamurthy, A.T. Nelson, Uranium carbide properties for advanced fuel modeling-A review, J. Nucl. Mater. 558 (2022), 153145, https://doi.org/10.1016/j.jnucmat.2021.153145.
  105. H. Forst, M. Ashby, Deformation-Mechanism Maps: the Plasticity and Creep of Metals and Ceramics, Pergamon Press, 1982.
  106. L. Brassart, F. Delannay, Bounds for shear viscosity in Nabarro-Herring-Coble creep, Mech. Mater. 137 (2019), 103106, https://doi.org/10.1016/j.mechmat.2019.103106.
  107. W.I. Stuart, G.H. Price, The high temperature reaction between beryllia and water vapour, J. Nucl. Mater. 14 (1964) 417-424, https://doi.org/10.1016/0022-3115(64)90207-7.
  108. J.B. Conway, D.G. Salyards, J. Holowach, R.A. Stanley, Techniques for measuring localized corrosion rates of beryllium oxide, J. Nucl. Mater. 14 (1964) 425-433, https://doi.org/10.1016/0022-3115(64)90208-9.
  109. L.I. Grossweiner, R.L. Seifert, The reaction of beryllium oxide with water vapor, J. Am. Chem. Soc. 74 (11) (1952) 2701-2704, https://doi.org/10.1021/ja01131a002.
  110. W.A. Young, The reactions of water vapor with beryllia and beryllia-alumina compounds, J. Am. Chem. Soc. 64 (1960) 1003-1006, https://doi.org/10.2172/4168686.
  111. M.J. Bannister, Sinterability studies on various BeO powders, J. Nucl. Mater. 14 (1964) 303-309, https://doi.org/10.1016/0022-3115(64)90193-X.
  112. B.R. Steele, N.S. Hibbert, F. Rigby, B. Oldfield, F.S. Martin, The preparation and characterisation of ceramic grade BeO, J. Nucl. Mater. 14 (1964) 310-314, https://doi.org/10.1016/0022-3115(64)90194-1.
  113. D.T. Livey, A.W. Hey, Sintering and densification studies on BeO powders, J. Nucl. Mater. 14 (1964) 285-293, https://doi.org/10.1016/0022-3115(64)90191-6.
  114. W.W. Beaver, J.G. Theodore, C.A. Bielawski, Effects of powder characteristics, additives and atmosphere on the sintering of sulfate-derived BeO, J. Nucl. Mater. 14 (1964) 326-337, https://doi.org/10.1016/0022-3115(64)90197-7.
  115. S.C. Carniglia, R.E. Johnson, A.C. Hott, G.G. Bentle, Hot pressing for nuclear applications of BeO; process, product and properties, J. Nucl. Mater. 14 (1964) 378-394, https://doi.org/10.1016/0022-3115(64)90203-X.
  116. R.J. Brown, N.W. Bass, Fabrication and properties of commercial beryllia ceramics for nuclear application, J. Nucl. Mater. 14 (1964) 341-348, https://doi.org/10.1016/0022-3115(64)90199-0.
  117. T.E. Clare, Studies in the cold pressing and sintering of beryllia, J. Nucl. Mater. 14 (1964) 359-367, https://doi.org/10.1016/0022-3115(64)90201-6.
  118. J. Bardsley, A. Ridal, The development of a technique for extrusion and sintering of beryllia, J. Nucl. Mater. 14 (1964) 368-377, https://doi.org/10.1016/0022-3115(64)90202-8.
  119. J.W. Hadley, TORY II-A: A Nuclear Ramjet Test Reactor, Report UCRL-5484, Lawrence Radiation Laboratory, University of California, 1959, https://doi.org/10.2172/4333232.
  120. M.J. Bannister, The kinetics of sintering and grain growth of beryllia, J. Nucl. Mater. 14 (1964) 315-321, https://doi.org/10.1016/0022-3115(64)90195-3.