Browse > Article
http://dx.doi.org/10.1016/j.net.2022.07.017

Beryllium oxide utilized in nuclear reactors: Part I: Application history, thermal properties, mechanical properties, corrosion behavior and fabrication methods  

Ming-dong Hou (Institute of Nuclear and New Energy Technology, Tsinghua University)
Xiang-wen Zhou (Institute of Nuclear and New Energy Technology, Tsinghua University)
Bing Liu (Institute of Nuclear and New Energy Technology, Tsinghua University)
Publication Information
Nuclear Engineering and Technology / v.54, no.12, 2022 , pp. 4393-4411 More about this Journal
Abstract
In recent years, beryllium oxide has been widely utilized in multiple compact nuclear reactors as the neutron moderator, the neutron reflector or the matrix material with dispersed nuclear fuels due to its prominent properties. In the past 70 years, beryllium oxide has been studied extensively, but rarely been systematically organized. This article provides a systematic review of the application history, thermal properties, mechanical properties, corrosion behavior and fabrication methods of beryllium oxide. Data from previous literature are extracted and sorted out, and all of these original data are attached as the supplementary material, so that subsequent researchers can utilize this paper as a database for beryllium oxide research in reactor design or simulation analysis, etc. In addition, this review article also attempts to point out the insufficiency of research on beryllium oxide, and the possible key research areas about beryllium oxide in the future.
Keywords
Beryllium oxide; Nuclear reactor; Thermal properties; Mechanical properties; Corrosion behavior; Fabrication methods;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W.D. Manly, G.M. Adamson, J.H. Coobs, J.H. DeVan, D.A. Douglas, E.E. Hoffman, P. Patriarca, Aircraft Reactor Experiment Metallurgical Aspects, Report ORNL-2349, Oak Ridge National Laboratory, 1958, https://doi.org/10.2172/4227617.   DOI
2 A.J. Rothman, Properties of BeO Ceramics and Their Application in a Nuclear Propulsion System (Pluto), Report UCRL-6743, Lawrence Radiation Laboratory, University of California, 1962. https://www.osti.gov/biblio/4724669.
3 A.J. Rothman, Beryllium Oxide for Nuclear Propulsion Application, Report UCRL-7428, Lawrence Radiation Laboratory, University of California, 1963. https://www.osti.gov/biblio/4126131.
4 W.C. Moore, The Experimental Beryllium Oxide Reactor. Maritime GasCooled Reactor Program, Report GA-2385, General Atomic Division, General Dynamic Corporation, 1961, https://doi.org/10.2172/4826933.   DOI
5 K.A. Trickett, Maritime Gas-Cooled Reactor Program. A Review of the Maritime Gas-Cooled Reactor Program, Report GA-2603, General Atomic Division, General Dynamic Corporation, 1961, https://doi.org/10.2172/4810737.   DOI
6 D.F. Putnam, I.H. Kabler, MGCR-Carbon Dioxide Cycle Studies, Report MGCRP-177, General Atomic Division, General Dynamic Corporation, 1958. https://www.osti.gov/biblio/4091863.
7 J.W. Blakley, J.S. Alcorn, L.G. DelValle, P.W. Healy, D.H. Moran, W.S. Scott, Army Gas-Cooled Reactors System Program. Transportability Studies, ML-1 Nuclear Power Plant, Report Ido-28555, Aerojet-General Nucleonics, 1960, https://doi.org/10.2172/4122663.   DOI
8 W.H. Roberts, The Australian high temperature gas-cooled reactor feasibility study, J. Nucl. Mater. 14 (1964) 29-40, https://doi.org/10.1016/0022-3115(64)90160-6.   DOI
9 H. Kronberger, The role of dispersed fuels in the future development of the advanced gas-cooled reactor, J. Nucl. Mater. 14 (1964) 41-48, https://doi.org/10.1016/0022-3115(64)90161-8.   DOI
10 R. Hecker, W. Rausch, R. Schulten, Development of High Temperature Thermal Reactors in Germany, Report EUR 3493e, Germany, 1966. http://aei.pitt.edu/91270/1/3493.pdf.
11 A. Bicevskis, E.W. Hesse, D.J. Mercer, Thorium fuel cycle for a beryllium oxide pebble-bed reactor, Thorium Fuel Cycle Proc. (1968) 129-155.
12 P.H. Horton, W.J. Kurzeka, Zirconium Hydride Reactor Control Reflector Systems: Summary Report, Report AI-AEC-13078, Atomics International Division, 1972, https://doi.org/10.2172/4374595.   DOI
13 D.J. Cockeram, SNAP 2, 8, and 10A reactor programs progress report, Prog. Astronautics Rocketry 16 (1966) 393-415, https://doi.org/10.1016/B978-1-4832-3056-6.50021-9.   DOI
14 W. Mayo, E. Lantz, Calculated Power Distribution of a Thermionic, Beryllium Oxide Reflected, Fast-Spectrum Reactor, NASA TM X-2838, National Aeronautics and Space Administration, 1973. https://ntrs.nasa.gov/citations/19730019931.
15 H.W. Davison, T.A. Kircbgessner, R.H. Springborn, H.G. Yacobucci, AdvancedPower-Reactor Design Concepts and Performance Characterristics, NASA TM X-2957, National Aeronautics and Space Administration, 1974. https://ntrs.nasa.gov/citations/19740006253.
16 D. Buden, Nuclear Reactors for Space Electric Power, Report LA-7290-SR, Los Alamos Scientific Laboratory, 1978, https://doi.org/10.2172/6864670.   DOI
17 J.V. Walker, J.A. Reuscher, P.S. Pickard, Design and Proposed Utilization of the Sandia Annular Core Research Reactor (ACRR), Sandia Laboratory, 1979. https://www.osti.gov/servlets/purl/6117577.
18 D.K. Mohapatra, E. Radha, P. Mohanakrishnan, Theoretical and experimental investigations of reactor parameters in a U-233 fuelled research reactor, Ann. Nucl. Energy 31 (2) (2004) 197-212, https://doi.org/10.1016/S0306-4549(03)00219-6.   DOI
19 A.M. Perry, A.M. Weinberg, Thermal breeder reactors, Annu. Rev. Nucl. Sci. 22 (1972) 317-354, https://doi.org/10.1146/annurev.ns.22.120172.001533.   DOI
20 B. Vrillon, F. Carre, E. Proust, Space Nuclear Power Studies in France-A New Concept of Particle Bed Reactor, Report CEA-CONF-9696, CEA Centre d'Etudes Nucleaires de Saclay, 1988. https://inis.iaea.org/search/search.aspx?orig_q=RN:20046218.
21 S. Usha, R.R. Ramanarayanan, P. Mohanakrishnan, R.P. Kapoor, Research reactor KAMINI, Nucl. Eng. Des. 236 (7-8) (2006) 872-880, https://doi.org/10.1016/j.nucengdes.2005.09.033.   DOI
22 R. Sanchez, T. Grove, D. Hayes, J. Goda, G. Mckenzie, J. Hutchinson, T. Cutler, J. Bounds, J. Walker, W. Myers, K. Smith, Kilowatt reactor using stirling TechnologY (KRUSTY) component-critical experiments, Nucl. Technol. 206 (2020) 56-67, https://doi.org/10.1080/00295450.2020.1722553.   DOI
23 P. McClure, D. Poston, M. Gibson, C. Bowmn, J. Creasy, KiloPower Space Reactor Concept-Reactor Materials Study, Report LA-UR-14-23402, Los Alamos National Laboratory, 2014, https://doi.org/10.2172/1131780.   DOI
24 J.C. King, M.S. EI-Genk, Submersion-subcritical safe space (S4) reactor, Nucl. Eng. Des. 236 (17) (2006) 1759-1777, https://doi.org/10.1016/j.nucengdes.2005.12.010.   DOI
25 G.P. Akishin, S.K. Turnaev, V.Y. Vaispapir, M.A. Gorbunova, Y.N. Makurin, V.S. Kiiko, A.L. Ivanovskii, Thermal conductivity of beryllium oxide ceramic, Refract. Ind. Ceram. 50 (6) (2009) 465-468, https://doi.org/10.1007/s11148-010-9239-z.   DOI
26 B.N. Rath, S.J. Ghanwat, S. Kaity, C. Danani, R.V. Kulkarni, V.D. Alur, D. Sathiyamoorthy, S. Anantharaman, Thermal conductivity of composites of beryllia and liythium titanate, J. Mater. Eng. Perform. 22 (11) (2013) 3455-3460, https://doi.org/10.1007/s11665-013-0606-z.   DOI
27 A.G. Kharlamov, Thermal conductivity of beryllium oxide in the 1000-2000 C Range, Sov. Energy 15 (6) (1963) 1313-1315, https://doi.org/10.1007/bf01115920.   DOI
28 V.S. Kiiko, V.Y. Vaispapir, Thermal conductivity and prospects for application of BeO ceramic in electronics, Glass Ceram 71 (11-12) (2015) 387-391, https://doi.org/10.1007/s10717-015-9694-6.   DOI
29 M.B. Bebek, C.M. Stanley, T.M. Gibbons, S.K. Estreicher, Temperature dependence of phonon-defect interactions: phonon scattering vs. phonon trapping, Sci. Rep. 6 (2016), 32150, https://doi.org/10.1038/srep32150.   DOI
30 A.W. Pryor, Thermal conductivity at low temperature of neutron-irradiated BeO, J. Nucl. Mater. 14 (1964) 208-219, https://doi.org/10.1016/0022-3115(64)90180-1.   DOI
31 G.A. Slack, Nonmetallic crystals with high thermal conductivity, J. Phys. Chem. Solids. 34 (2) (1973) 321-335, https://doi.org/10.1016/0022-3697(73)90092-9.   DOI
32 Y.M. Kozlovskii, S.V. Stankus, Thermal expansion of beryllium oxide in the temperature interval 20-1550 ℃, High Temp 52 (4) (2014) 536-540, https://doi.org/10.1134/s0018151x1403016x.   DOI
33 R.W. Swindeman, Thermal shock tests on beryllia, J. Nucl. Mater. 14 (1964) 404-415, https://doi.org/10.1016/0022-3115(64)90205-3.   DOI
34 E.S. Lukin, D.N. Poluboyarinov, Some thermomechanical properties of pure oxide ceramics, Refractories 4 (1963) 347-352, https://doi.org/10.1007/BF01285119.   DOI
35 R.E. Fryxell, B.A. Chandler, Creep, strength, expansion, and elastic moduli of sintered BeO as a function of grain size, porosity, and grain orientation, J. Am. Ceram. Soc. 47 (1964) 283-291, https://doi.org/10.1111/j.1151-2916.1964.tb14417.x.   DOI
36 J.D. Patterson, B.C. Bailey, Solid-State Physics: Introduction to the Theory, third ed., Springer International Publishing AG, Switzerland, 2018 https://doi.org/10.1007/978-3-319-75322-5.   DOI
37 H. Iwanaga, A. Kunishige, S. Takeuchi, Anisotropic thermal expansion in wurtzite-type crystals, J. Mater. Sci. 35 (2000) 2451-2454, https://doi.org/10.1023/A:1004709500331.   DOI
38 B. Schwartz, Beryllia, its Physical Properties at Elevated Temperatures, Report 1083, ATI-210826, Massachusetts Institute of Technology, 1952.
39 R.M. Spriggs, Effect of open and closed pores on elastic moduli of polycrystalline alumina, J. Am. Ceram. Soc. 45 (9) (1962) 454, https://doi.org/10.1111/j.1151-2916.1962.tb11192.x.   DOI
40 J. Lillie, Some Properties of Beryllium Oxide, Report UCRL-6457, Lawrence Radiation Laboratory, 1961, https://doi.org/10.2172/4019213.   DOI
41 D.P.H. Hasselman, On porosity dependence of elastic moduli of polycrystalline refractory materials, J. Am. Ceram. Soc. 45 (9) (1962) 452-453, https://doi.org/10.1111/j.1151-2916.1962.tb11191.x.   DOI
42 B.A. Chandler, R.E. Fryxell, Physical Properties of Sintered BeO as Influenced by Microstructure, Report TM-63-5-4, General Electric, 1963, https://doi.org/10.2172/4690106.   DOI
43 J.J. Gangler, Some physical properties of eight refractory oxides and carbides, J. Am. Ceram. Soc. 33 (1950) 367-374, https://doi.org/10.1111/j.1151-2916.1950.tb14155.x.   DOI
44 I.Y. Guzman, D.N. Poluboynarinov, Some properties of porous ceramics made of beryllium oxide, Refractories 3 (1962) 347-351, https://doi.org/10.1007/BF01342817.   DOI
45 S.C. Carniglia, R.E. Johnson, A.C. Hott, G.G. Bentle, Hot pressing for nuclear applications of BeO; process, product, and properties, J. Nucl. Mater. 14 (1964) 378-394, https://doi.org/10.1016/0022-3115(64)90203-X.   DOI
46 G.G. Bentle, K.T. Miller, Dislocations, slip, and fracture in BeO single crystals, J. Appl. Phys. 38 (1967) 4248-4257, https://doi.org/10.1063/1.1709112.   DOI
47 M.K. Ferber, P.F. Becher, Static fatigue behavior of polycrystalline beryllia, J. Am. Ceram. Soc. 73 (7) (1990) 2038-2046, https://doi.org/10.1111/j.1151-2916.1990.tb05264.x.   DOI
48 F.P. Knudsen, Dependence of mechanical strength of brittle polycrystalline specimens on porosity and grain size, J. Am. Ceram. Soc. 42 (8) (1959) 376-387, https://doi.org/10.1111/j.1151-2916.1959.tb13596.x.   DOI
49 G.G. Bentle, R.M. Kniefel, Brittle and plastic behavior of hot-pressed BeO, J. Am. Ceram. Soc. 48 (11) (1965) 570-577, https://doi.org/10.1111/j.1151-2916.1965.tb14674.x.   DOI
50 K.D. Reeve, Fabrication and structure of beryllium oxide-based fuels, J. Nucl. Mater. 14 (1964) 435-443, https://doi.org/10.1016/0022-3115(64)90209-0.   DOI
51 C. Hyde, J.F. Quirk, W.H. Duckworth, Preparation of Dense Beryllium Oxide, Report BMI-1020, Battelle Memorial Institute, Ohio, 1955.
52 D.A. Krohn, D.R. Larson, D.P.H. Hasselman, Comparison of thermal-stress resistance of polycrystalline Al2O3 and BeO, J. Am. Ceram. Soc. 56 (9) (1973) 490-491, https://doi.org/10.1111/j.1151-2916.1973.tb12532.x.   DOI
53 R.R. Vandervoort, W.L. Barmore, Compressive creep of polycrystalline beryllium oxide, J. Am. Ceram. Soc. 46 (4) (1963) 180-184, https://doi.org/10.1111/j.1151-2916.1963.tb11711.x.   DOI
54 R. Chang, High temperature creep and anelastic phenomena in polycrystalline refractory oxides, J. Nucl. Mater. 1 (2) (1959) 174-181, https://doi.org/10.1016/0022-3115(59)90050-9.   DOI
55 W.L. Barmore, R.R. Vandervoort, High-temperature plastic deformation of polycrystalline beryllium oxide, J. Am. Ceram. Soc. 48 (10) (1965) 499-505, https://doi.org/10.1111/j.1151-2916.1965.tb14648.x.   DOI
56 W.L. Barmore, R.R. Vandervoort, High-temperature creep and dislocation etch pits in polycrystalline beryllium oxide, J. Am. Ceram. Soc. 50 (6) (1967) 316-320, https://doi.org/10.1111/j.1151-2916.1967.tb15117.x.   DOI
57 L. Brassart, F. Delannay, Bounds for shear viscosity in Nabarro-Herring-Coble creep, Mech. Mater. 137 (2019), 103106, https://doi.org/10.1016/j.mechmat.2019.103106.   DOI
58 D.T. Livey, Beryllium oxide, in: A.M. Alper (Ed.), Magnesia, Alumina, Beryllia Ceramics: Fabrication, Characterization and Properties: High Temperature Oxides Part III, Academic Press Inc., New York, 1970, pp. 1-52, https://doi.org/10.1016/B978-0-12-053303-9.50009-5.   DOI
59 G. Vasudevamurthy, A.T. Nelson, Uranium carbide properties for advanced fuel modeling-A review, J. Nucl. Mater. 558 (2022), 153145, https://doi.org/10.1016/j.jnucmat.2021.153145.   DOI
60 H. Forst, M. Ashby, Deformation-Mechanism Maps: the Plasticity and Creep of Metals and Ceramics, Pergamon Press, 1982.
61 W.I. Stuart, G.H. Price, The high temperature reaction between beryllia and water vapour, J. Nucl. Mater. 14 (1964) 417-424, https://doi.org/10.1016/0022-3115(64)90207-7.   DOI
62 J.B. Conway, D.G. Salyards, J. Holowach, R.A. Stanley, Techniques for measuring localized corrosion rates of beryllium oxide, J. Nucl. Mater. 14 (1964) 425-433, https://doi.org/10.1016/0022-3115(64)90208-9.   DOI
63 L.I. Grossweiner, R.L. Seifert, The reaction of beryllium oxide with water vapor, J. Am. Chem. Soc. 74 (11) (1952) 2701-2704, https://doi.org/10.1021/ja01131a002.   DOI
64 W.A. Young, The reactions of water vapor with beryllia and beryllia-alumina compounds, J. Am. Chem. Soc. 64 (1960) 1003-1006, https://doi.org/10.2172/4168686.   DOI
65 M.J. Bannister, Sinterability studies on various BeO powders, J. Nucl. Mater. 14 (1964) 303-309, https://doi.org/10.1016/0022-3115(64)90193-X.   DOI
66 S.C. Carniglia, R.E. Johnson, A.C. Hott, G.G. Bentle, Hot pressing for nuclear applications of BeO; process, product and properties, J. Nucl. Mater. 14 (1964) 378-394, https://doi.org/10.1016/0022-3115(64)90203-X.   DOI
67 B.R. Steele, N.S. Hibbert, F. Rigby, B. Oldfield, F.S. Martin, The preparation and characterisation of ceramic grade BeO, J. Nucl. Mater. 14 (1964) 310-314, https://doi.org/10.1016/0022-3115(64)90194-1.   DOI
68 D.T. Livey, A.W. Hey, Sintering and densification studies on BeO powders, J. Nucl. Mater. 14 (1964) 285-293, https://doi.org/10.1016/0022-3115(64)90191-6.   DOI
69 W.W. Beaver, J.G. Theodore, C.A. Bielawski, Effects of powder characteristics, additives and atmosphere on the sintering of sulfate-derived BeO, J. Nucl. Mater. 14 (1964) 326-337, https://doi.org/10.1016/0022-3115(64)90197-7.   DOI
70 R.J. Brown, N.W. Bass, Fabrication and properties of commercial beryllia ceramics for nuclear application, J. Nucl. Mater. 14 (1964) 341-348, https://doi.org/10.1016/0022-3115(64)90199-0.   DOI
71 T.E. Clare, Studies in the cold pressing and sintering of beryllia, J. Nucl. Mater. 14 (1964) 359-367, https://doi.org/10.1016/0022-3115(64)90201-6.   DOI
72 J. Bardsley, A. Ridal, The development of a technique for extrusion and sintering of beryllia, J. Nucl. Mater. 14 (1964) 368-377, https://doi.org/10.1016/0022-3115(64)90202-8.   DOI
73 J.W. Hadley, TORY II-A: A Nuclear Ramjet Test Reactor, Report UCRL-5484, Lawrence Radiation Laboratory, University of California, 1959, https://doi.org/10.2172/4333232.   DOI
74 M.J. Bannister, The kinetics of sintering and grain growth of beryllia, J. Nucl. Mater. 14 (1964) 315-321, https://doi.org/10.1016/0022-3115(64)90195-3.   DOI
75 Z. Gholamzadeh, F. Khoshahval, M.A. Mozafari, A.J. Vaziri, Computational investigation of Tehran research reactor graphite reflector replacement with Be, BeO or D2O and its impacts on thermal neutron flux enhancement, Int. J. Nucl. Energy Sci. Technol. 13 (4) (2019) 350-371, https://doi.org/10.1504/ijnest.2019.106054.   DOI
76 H. Luo, Q. Wei, Z.M. Yu, Y. Wang, H. Long, Y. Xie, Effect of film thickness on the temperature dependence of thermal conductivity for diamond/BeO composites, Ceram. Int. 41 (9) (2015) 12052-12057, https://doi.org/10.1016/j.ceramint.2015.06.020. Part B.   DOI
77 I.V. Dulera, R.K. Sinha, High temperature reactors, J. Nucl. Mater. 383 (1-2) (2008) 183-188, https://doi.org/10.1016/j.jnucmat.2008.08.056.   DOI
78 S. Dawahra, K. Khattab, G. Saba, Investigation of BeO as a reflector for the low power research reactor, Prog. Nucl. Energy 81 (2015) 1-5, https://doi.org/10.1016/j.pnucene.2014.12.001.   DOI
79 M.J. Naramore, High Thermal Conductivity UO2-BeO Nulcear Fuel: Neutronic Performance Assessments and Overview of Fabrication, Texas A & M University, 2010. Master's thesis, https://hdl.handle.net/1969.1/153193.
80 C. Garcia, Sintering and Thermal Behavior of Uranium Dioxide in Beryllium Oxide Matrix, Texas A & M University, 2014. Master's thesis, https://hdl.handle.net/1969.1/158902.
81 T. Zahradka, R. Skoda, Cost saving when using enhanced conductivity nuclear fuel containing BeO in WWER-1000 reactors, in: Proceedings of the 2014 22nd International Conference on Nuclear Engineering, 2014, https://doi.org/10.1115/ICONE22-30901. Prague, Czech Republic.   DOI
82 C.S. Handwerk, M.J. Driscoll, P. Hejzlar, Optimized core design of a supercritical carbon dioxide-cooled fast reactor, Nucl. Technol. 164 (3) (2008) 320-336, https://doi.org/10.13182/NT08-A4030.   DOI
83 C.F. Cline, H.L. Dunegan, G.W. Henderson, Elastic constant of hexagonal BeO, ZnS, and CdSe, J. Appl. Phys. 38 (4) (1967) 1944-1948, https://doi.org/10.1063/1.1709787.   DOI
84 D.M. Camarano, F.A. Mansur, A.M.M. Santos, W.B. Ferraz, Increase of thermal conductivity of uranium dioxide nuclear fuel pellets with beryllium oxide addition, 22. CBECIMAT: Brazilian congress of engineering and materials science, Natal, RN Brazil, https://inis.iaea.org/search/search.aspx?orig_q=RN:48076753, 2016.
85 V.K. Mehta, P. McClure, D. Kotlyar, Selection of a space reactor moderator using lessons learned from SNAP and ANP programs, in: AIAA Propulsion and Energy 2019 Forum, 2019, https://doi.org/10.2514/6.2019-4451. Indianapolis, United States.   DOI
86 Y.N. Makurin, I.R. Shein, M.A. Gorbunova, V.S. Kiiko, A.L. Ivanovskii, Firstprinciple quantum-chemical calculations of several thermomechanical parameters of beryllium ceramics, Refract. Ind. Ceram. 47 (5) (2006) 310-313, https://doi.org/10.1007/s11148-006-0115-9.   DOI
87 J.J. Quinn, K.S. Yi, Solid State Physics: Principles and Modern Applications, Springer, Dordrecht Heidelberg London New York, 2009, https://doi.org/10.1007/978-3-540-92231-5.   DOI
88 M. Burk, Thermal conductivity of beryllia ceramics from -200 ℃ to 150 ℃, J. Am. Ceram. Soc. 46 (3) (1963) 150-151, https://doi.org/10.1111/j.1151-2916.1963.tb11700.x.   DOI
89 R.E. Taylor, Thermal conductivity and expansion of beryllia at high temperatures, J. Am. Ceram. Soc. 45 (2) (1962) 74-78, https://doi.org/10.1111/j.1151-2916.1962.tb11083.x.   DOI
90 M. Adams, Thermal conductivity: III, prolate spheroidal envelope method, J. Am. Ceram. Soc. 37 (2) (1954) 74-79, https://doi.org/10.1111/j.1551-2916.1954.tb20102.x.   DOI
91 I. Pioro, P. Kirillov, Generation IV nuclear reactors as a basis for future electricity production in the world, Mater. Process. Energy (2013) 818-830.
92 W.D. Kingery, Thermal conductivity: XII, temperature dependence of conductivity for single-phase ceramics, J. Am. Ceram. Soc. 38 (7) (1955) 251e255, https://doi.org/10.1111/j.1151-2916.1955.tb14940.x.   DOI
93 J. Francl, W.D. Kingery, Thermal conductivity: IV, apparatus for determining thermal conductivity by a comparative method, J. Am. Ceram. Soc. 37 (2) (1954) 80-84, https://doi.org/10.1111/j.1551-2916.1954.tb20103.x.   DOI
94 M. McQuarrie, Thermal conductivity: VII, analysis of variation of conductivity with temperature for Al2O3, BeO, and MgO, J. Am. Ceram. Soc. 37 (2) (1954) 91-95, https://doi.org/10.1111/j.1551-2916.1954.tb20106.x.   DOI
95 H.A. Wriedt, The Be-O (Beryllium-Oxygen) system, Bull. Alloy Phase Diagrams 6 (1985) 553-558, https://doi.org/10.1007/bf02887158.   DOI
96 R.C. Ropp, Group 16 (O, S, Se, Te) alkaline earth compounds, in: R.C. Ropp (Ed.), Encyclopedia of the Alkaline Earth Compounds, Elsevier, 2013, pp. 105-197, https://doi.org/10.1016/b978-0-444-59550-8.00003-x.   DOI
97 D.K. Smith, C.F. Cline, The crystal structure of beta beryllia, J. Nucl. Mater. 14 (1964) 237-238, https://doi.org/10.1016/0022-3115(64)90183-7.   DOI
98 K. Kobashi, Heteroepitaxial growth on cBN, Ni, and other substrates, in: K. Kobashi (Ed.), Diamond Films, Elsevier, 2005, pp. 91-118, https://doi.org/10.1016/B978-008044723-0/50010-6.   DOI
99 B. Bellamy, T.W. Baker, D.T. Livey, The lattice parameter and density of beryllium oxide determined by precise X-ray methods, J. Nucl. Mater. 6 (1) (1962) 1-4, https://doi.org/10.1016/0022-3115(62)90210-6.   DOI
100 R.A. Belyaev, Beryllium Oxide: Properties and Applications, Report AEC-Tr6175, United States Atomic Energy Commission, 1964.
101 K.K. Kelley, Critical evaluation of high-temperature heat capacities of inorganic compounds, US. Bur. Mines, Bull. No. 476 (1949).
102 K.K. Kelley, The specific heats at low temperatures of beryllium oxide and beryllium orthosilicate (phenacite), J. Am. Chem. Soc. 61 (5) (1939) 1217-1218, https://doi.org/10.1021/ja01874a059.   DOI
103 J.J. Petrovic, C.L. Haertling, Beryllium Oxide (BeO) Handbook, Report LA-UR20-24561, Los Alamos National Laboratory, 2020, https://doi.org/10.2172/1635499.   DOI
104 S.C. Carniglia, J.E. Hove, Fabrication and properties of dense beryllium oxide, J. Nucl. Mater. 4 (2) (1961) 165-176, https://doi.org/10.1016/0022-3115(61)90125-8.   DOI
105 A.C. Victor, T.B. Douglas, Thermodynamic properties of magnesium oxide and beryllium oxide from 298 to 1,200 K, J. Res. Natl. Bur. Stand. A. Phys. Chem. 67A (4) (1963) 325-329.   DOI
106 I.E. Cooper, A Study of the Methods of Extracting Beryllia from Beryl, University of Illinois-Urbana, 1920 (Undergraduate thesis).
107 L.W. Mckeehan, The crystal structure of beryllium and of beryllium oxide, Proc. Natl. Acad. Sci. U.S.A. 8 (9) (1922) 270-274, https://doi.org/10.1073/pnas.8.9.270.   DOI
108 M.L.E. Oliphant, L. Rutherford, Experiments on the transmutation of elements by protons, Proc. Roy. Soc. A141 (1933) 259-281, https://doi.org/10.1098/rspa.1933.0117.   DOI
109 C.B. Sawyer, B.J. Kjellgren, Newer developments in beryllium, Ind. Eng. Chem. 30 (5) (1938) 501-505. https://pubs.acs.org/doi/pdf/10.1021/ie50341a006.   DOI
110 H.E. White, R.M. Shremp, Beryllium oxide: I, J. Am. Ceram. Soc. 22 (1939) 185-189, https://doi.org/10.1111/j.1151-2916.1939.tb19449.x.   DOI
111 H.E. White, R.M. Shremp, C.B. Sawyer, Beryllium oxide refractories: II, J. Am. Ceram. Soc. 23 (1940) 157-159, https://doi.org/10.1111/j.1151-2916.1940.tb14227.x.   DOI
112 H.C. Urey, The Heavy Water-Slurry Pile, Report A-743, Columbia University, 1943, pp. 2R-449R. https://www.osti.gov/servlets/purl/4374663.
113 F. Daniels, Suggestions for a High-Temperature Pebble Pile, Report MUC-FD8, Oak Ridge National Laboratory, 1944, https://doi.org/10.2172/4359817.   DOI
114 M.T. Simnad, The early history of high-temperature helium gas-cooled nuclear power reactors, Energy 16 (1-2) (1991) 25-32, https://doi.org/10.1016/0360-5442(91)90084-Y.   DOI
115 W.D. Manly, Utilization of BeO in reactors, J. Nucl. Mater. 14 (1964) 3-18, https://doi.org/10.1016/0022-3115(64)90158-8.   DOI
116 L.R. Hafstad, Reactors, Sci. Am. 184 (4) (1951) 43-51. https://www.jstor.org/stable/24945141.   DOI
117 B.C. Hacker, Whoever Heard of Nuclear Ramjets? Project Pluto, 1957-1964, vol. 1, 1995, pp. 85-98. Icon. http://www.jstor.org/stable/23786203.
118 A.M. Weinberg, Aircraft Nuclear Propulsion Project, Report ORNL-629, Oak Ridge National Laboratory, 1950, https://doi.org/10.2172/1232662.   DOI
119 E.S. Bettis, W.B. Cottrell, E.R. Mann, J.L. Meem, G.D. Whitman, The aircraft reactor experiment-operation, Nucl. Sci. Eng. 2 (6) (1957) 841-853, https://doi.org/10.13182/NSE57-A35497.   DOI
120 W.K. Ergen, A.D. Callihan, C.B. Mills, D. Scott, The aircraft reactor experimentphysics, Nucl. Sci. Eng. 2 (6) (1957) 826-840, https://doi.org/10.13182/NSE57-A35496.   DOI