• Title/Summary/Keyword: optimality function

Search Result 147, Processing Time 0.034 seconds

OPTIMIZATION AND IDENTIFICATION FOR THE NONLINEAR HYPERBOLIC SYSTEMS

  • Kang, Yong-Han
    • East Asian mathematical journal
    • /
    • v.16 no.2
    • /
    • pp.317-330
    • /
    • 2000
  • In this paper we consider the optimal control problem of both operators and parameters for nonlinear hyperbolic systems. For the identification problem, we show that for every value of the parameter and operators, the optimal control problem has a solution. Moreover we obtain the necessary conditions of optimality for the optimal control problem on the system.

  • PDF

Bayes and Empirical Bayes Estimation of the Scale Parameter of the Gamma Distribution under Balanced Loss Functions

  • Rezaeian, R.;Asgharzadeh, A.
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.71-80
    • /
    • 2007
  • The present paper investigates estimation of a scale parameter of a gamma distribution using a loss function that reflects both goodness of fit and precision of estimation. The Bayes and empirical Bayes estimators rotative to balanced loss functions (BLFs) are derived and optimality of some estimators are studied.

OPTIMAL PROBLEM FOR RETARDED SEMILINEAR DIFFERENTIAL EQUATIONS

  • Park, Dong-Gun;Jeong, Jin-Mun;Kang, Weon-Kee
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.317-332
    • /
    • 1999
  • In this paper we deal with the optimal control problem for the semilinear functional differential equations with unbounded delays. We will also establish the regularity for solutions of the given system. By using the penalty function method we derive the optimal conditions for optimality of an admissible state-control pairs.

  • PDF

NUMERICAL SOLUTION OF A KYNAMIC SHAPE CONTROL PROBLEM

  • Choi, Wan-Sik;Belbas, Stavros A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.275-278
    • /
    • 1995
  • In this paper, we consider a dynamic shape control problem with an example of controlling a flexible beam shape. Mathematical formulations are obtained by employing the Green's function approach. Necessary conditions for optimality are derived by considering the quadratic performance criteria. Numerical results for both of the dynamic and the static cases are obtained and compared.

  • PDF

Some Properties on Receding Horizon $H_{\infty}$ Control for Nonlinear Discrete-time Systems

  • Ahn, Choon-Ki;Han, Soo-Hee;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.460-465
    • /
    • 2004
  • In this paper, we present some properties on receding horizon $H_{\infty}$ control for nonlinear discrete-time systems. First, we propose the nonlinear inequality condition on the terminal cost for nonlinear discrete-time systems. Under this condition, noninceasing monotonicity of the saddle point value of the finite horizon dynamic game is shown to be guaranteed. We show that the derived condition on the terminal cost ensures the closed-loop internal stability. The proposed receding horizon $H_{\infty}$ control guarantees the infinite horizon $H_{\infty}$ norm bound of the closed-loop systems. Also, using this cost monotonicity condition, we can guarantee the asymptotic infinite horizon optimality of the receding horizon value function. With the additional condition, the global result and the input-to-state stable property of the receding horizon value function are also given. Finally, we derive the stability margin for the saddle point value based receding horizon controller. The proposed result has a larger stability region than the existing inverse optimality based results.

  • PDF

Application of DCOC for Minimum Cost Design of Reinforced Concrete T-Beams

  • 신연근;박중열;조홍동;한상훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.379-388
    • /
    • 2000
  • This paper describes the application of discretized continuum-type optimality criteria (DCOC) for design of the reinforced concrete T-beams. The cost of construction as objective function which includes the costs of concrete, reinforced steel and formwork is minimized. The design constraints include limits on the maximum deflection in a given span on bending and shear strengths and optimality criteria is given based on the well blown Kuhn-Tucker necessary conditions, followed by an iterative procedure for designs when the design variables are the depth and the steel ratio. The versatility of the DCOC technique has been demonstrated by considering numerical examples which have one and five span RC T-beams.

  • PDF

Schm Constructions within Optimality Theory

  • Yu, Sihyeon
    • Korean Journal of English Language and Linguistics
    • /
    • v.2 no.3
    • /
    • pp.431-469
    • /
    • 2002
  • The main purpose of this paper is to present data about schm constructions in English and to examine them within the framework of Optimality Theory. American people sometimes reduplicate a word in deprecation using a prefix schm- or shm-, as in fancy-shmancy, and old-shmold. In these data, reduplicants surface as a copy of the whole word except the onset of the first syllable, which is replaced with schm. My data include some examples where the onset of the second syllable, not the first syllable, within the word reduplication is deleted and replaced with fixed segmentism schm, which seems to be infix rather than prefix. Above all, this study presents concrete evidence for the existence and function of ‘syllable’ and ‘foot’ known as prosodic categories by examining schm reduplication. Such extensions of schm-reduplcation also make predictions about types of outputs corresponding to their inputs.

  • PDF

Minimum Cost Design of Reinforced Concrete Frames Using DCOC (DCOC를 이용한 RC 프레임의 최소경비설계)

  • 한상훈;구봉근;조홍동;오현수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.485-490
    • /
    • 2000
  • This paper describes the application of discretized continuum-type optimality criteria (DCOC) for minimum-cost design of the reinforced concrete frame structures consisting of beams and columns. The cost of construction as objective function which includes the costs of concrete, reinforced steel and formwork is minimized. The design constraints include limits on the maximum deflection at a prescribed node, bending and shear strengths in beams, uniaxial bending strength of columns according to design codes(CEB/FIP, 1990). In the first stage, only beams with uniform cross-sectional parameters per span are considered. But the steel ratio is allowed to vary freely. The cross-sectional parameters and steel ratio in each column are assumed to be uniform for practical reasons. Optimality criteria is given based on the well known Kuhn-Tucker necessary conditions, followed by an iterative procedure for designs when the design variables are the depth and the steel ratio. The versatility of the DCOC technique has been demonstrated by considering numerical examples which have one-bay four-storey frame.

  • PDF

Minimum-Time Trajectory Planning Ensuring Collision-Free Motions for Two Robots with Geometric Path Constraints (공간상의 길이 주어진 두 대의 로보트를 위한 최소시간 충돌회피 경로 계획)

  • ;Zeung Nam Bien
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.5
    • /
    • pp.357-368
    • /
    • 1991
  • Collision-free trajectory planning for two robots is considered. The two robot system handled in the paper is given specified geometric paths for two robots, and the task is repeating. Then, the robot dynamics is transformed as a function of the traveled lengths along the paths, and the bounds on acceleration and velocity are described in the phase plane be taking the constraints on torques and joint velocities into consideration. Collision avoidance and time optimality are considered simultaneously in the coordination space and the phase plane, respectively. The proof for the optimality of the proposed algorithm is given, and a simulation result is included to show the usefulness of the proposed method.

  • PDF