East Asian Math. J. Vol. 32 (2016), No. 5, pp. 635–639 http://dx.doi.org/10.7858/eamj.2016.043

ON SUFFICIENCY AND DUALITY FOR FRACTIONAL ROBUST OPTIMIZATION PROBLEMS INVOLVING (V, ρ) -INVEX FUNCTION

GWI SOO KIM AND MOON HEE KIM

ABSTRACT. In this paper, we prove a sufficient optimality theorems for the problem (FP) under (V, ρ) -invexity assumption. And we give Mond-Weir type dual problem and proved weak and strong duality theorem under (V, ρ) -invexity.

1. Introduction

Consider a fractional robust optimization problem:

. . . .

(FP)
$$\inf_{x \in \mathbb{R}^n} \left\{ \frac{f(x)}{g(x)} : h_j(x, v_j) \le 0, \ \forall v_j \in V_j, \ j = 1, \cdots, m \right\},$$

where v_j are uncertain parameters and $v_j \in V_j$, $j = 1, \dots, m$ for some convex compact sets $V_j \subset \mathbb{R}^q$, $j = 1, \dots, m$ and $f : \mathbb{R}^n \to \mathbb{R}$, $g : \mathbb{R}^n \to \mathbb{R}$ and $h_j : \mathbb{R}^n \times \mathbb{R}^q \to \mathbb{R}$, $j = 1, \dots, m$ are continuously differentiable functions. Assume that $f(x) \ge 0$ and g(x) > 0.

Let $F := \{x \in \mathbb{R}^n : h_j(x, v_j) \leq 0, \forall v_j \in V_j, j = 1, \dots, m\}$ be the robust feasible set of (FP). Then we say that x^* is a robust solution of (FP) if $x^* \in F$ and $\frac{f(x)}{g(x)} \geq \frac{f(x^*)}{g(x^*)}$ for any $x \in F$.

We introduce the following definition due to Kuk et al. [7].

Definition 1. A function $f : \mathbb{R}^n \to \mathbb{R}$ is said to be (V, ρ) -invex at $u \in \mathbb{R}^n$ with respect to the function η and $\theta : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ if there exists $\alpha : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+ \setminus \{0\}$ and $\rho \in \mathbb{R}$ such that for any $x \in \mathbb{R}^n$

$$\alpha(x,u)[f(x) - f(u)] \ge \nabla f(u)^T \eta(x,u) + \rho \|\theta(x,u)\|^2.$$

Definition 2. A function $f : \mathbb{R}^n \to \mathbb{R}$ is said to be η -invex at $u \in \mathbb{R}^n$ such that for any $x \in \mathbb{R}^n$

$$f(x) - f(u) \ge \nabla f(u)^T \eta(x, u).$$

©2016 The Youngnam Mathematical Society (pISSN 1226-6973, eISSN 2287-2833)

Received March 17, 2016; Accepted June 27, 2016.

²⁰¹⁰ Mathematics Subject Classification. 90C25, 90C30, 90C46.

Key words and phrases. Fractional robust optimization, $V - \rho$ -invex function, duality.

G.S.KIM AND M.H.KIM

Robust optimization provides a tool for handling the uncertainty related with the optimization problems ([1]- [5]). Recently, Kim and Kim [6] gave necessary optimality theorems for (FP). Moreover, they give Mond-Weir type dual problem and proved weak and strong duality theorem under convexity.

In this paper, we give a sufficient optimality theorems for the problem (FP) under (V, ρ) -invexity assumption. And we give Mond-Weir type dual problem and proved weak and strong duality theorem under (V, ρ) -invexity.

2. Optimality and duality theorems

In this section, we give necessary optimality conditions for the fractional robust optimization problem (FP).

Let $\bar{x} \in F$ and let us decompose $J := \{1, \dots, m\}$ into two index sets $J = J_1(\bar{x}) \cup J_2(\bar{x})$ where $J_1(\bar{x}) = \{j \in J \mid \exists v_j \in V_j \text{ s.t. } h_j(\bar{x}, v_j) = 0\}$ and $J_2(\bar{x}) = J \setminus J_1(\bar{x})$. Let $V_j^0 = \{v_j \in V_j \mid h_j(\bar{x}, v_j) = 0\}$ for $j \in J_1(\bar{x})$. For a continuously differentiable function $h : \mathbb{R}^n \times \mathbb{R}^q \to \mathbb{R}$, we use $\nabla_1 h$ to denote the derivative of h with respect to the first variable.

Now we say that an Extended Mangasarian-Fromovitz constraint qualification (EMFCQ) holds at \bar{x} for (FP) if there exists $d \in \mathbb{R}^n$ such that for any $j \in J_1(\bar{x})$ and any $v_j \in V_j^0$,

$$\nabla_1 h_i(\bar{x}, v_i)^T d < 0.$$

Now we give a necessary optimality theorem for a solution of (FP).

Theorem 2.1. [6] Let $\bar{x} \in F$ be a robust solution of (FP). Suppose that $h_j(\bar{x}, \cdot)$ is concave on V_j , $j = 1, \dots, m$. Then there exist $\lambda \ge 0$, $\mu_j \ge 0$, $j = 1, \dots, m$, not all zero, $\bar{v}_j \in V_j$, $j = 1, \dots, m$ such that

$$\lambda \left[\nabla f(\bar{x}) - \frac{f(\bar{x})}{g(\bar{x})} \nabla g(\bar{x}) \right] + \sum_{j=1}^{m} \mu_j \nabla_1 h_j(\bar{x}, \bar{v}_j) = 0,$$

$$\mu_j h_j(\bar{x}, \bar{v}_j) = 0, \ j = 1, \cdots, m.$$

Moreover, if we assume that the Extended Mangasarian-Fromovitz constraint qualification then we have (EMFCQ) holds, then

$$\nabla f(\bar{x}) - \frac{f(\bar{x})}{g(\bar{x})} \nabla g(\bar{x}) + \sum_{j=1}^{m} \mu_j \nabla_1 h_j(\bar{x}, \bar{v}_j) = 0,$$

$$\mu_j h_j(\bar{x}, \bar{v}_j) = 0, \ j = 1, \cdots, m.$$

Now we give a sufficient optimality theorems for the fractional robust optimization problem (FP).

636

Theorem 2.2. Let $\bar{x} \in F$ and assume that $h_j(\bar{x}, \cdot)$ is concave on V_j , $j = 1, \cdots, m$. Suppose that there exist $\mu_j \geq 0$, $\bar{v}_j \in V_j$, $j = 1, \cdots, m$ such that

$$\nabla f(\bar{x}) - \frac{f(\bar{x})}{g(\bar{x})} \nabla g(\bar{x}) + \sum_{j=1}^{m} \mu_j \nabla_1 h_j(\bar{x}, \bar{v}_j) = 0,$$
(1)
$$\sum_{j=1}^{m} \mu_j h_j(\bar{x}, \bar{v}_j) = 0.$$

Assume that $f(\cdot)$ and $-g(\cdot)$ are (V,ρ) -invex at \bar{x} and $h_j(\cdot, \bar{v}_j)$, $j = 1, \cdots, m$ are η -invex at \bar{x} with respect to the same η and $\rho \|\theta(x, \bar{x})\|^2 \geq 0$. Then \bar{x} is a robust solution of (FP).

Proof. Suppose that $\bar{x} \in F$ is not a robust solution of (FP). Then there exist a feasible solution \tilde{x} of (FP) such that

$$\frac{f(\widetilde{x})}{g(\widetilde{x})} < \frac{f(\bar{x})}{g(\bar{x})}$$

Since

$$f(\tilde{x}) - \frac{f(\bar{x})}{g(\bar{x})}g(\tilde{x}) < 0 = f(\bar{x}) - \frac{f(\bar{x})}{g(\bar{x})}g(\bar{x}).$$

Since $\alpha(x, u) > 0$,

$$\alpha(x,u)[f(\tilde{x}) - f(\bar{x})] - \alpha(x,u)\frac{f(\bar{x})}{g(\bar{x})}[g(\tilde{x}) - g(\bar{x})] < 0.$$

Since $f(\cdot)$ and $-g(\cdot)$ are (V, ρ) -invex at \bar{x} with respect to the same η and ρ ,

$$\nabla f(\bar{x})^T \eta(x,\bar{x}) + \rho \|\theta(\widetilde{x},\bar{x})\|^2 - \frac{f(\bar{x})}{g(\bar{x})} [\nabla g(\bar{x})^T \eta(\widetilde{x},\bar{x}) + \rho \|\theta(\widetilde{x},\bar{x})\|^2] < 0.$$

Since $\rho \|\theta(\tilde{x}, \bar{x})\|^2 \ge 0$,

$$\left[\nabla f(\bar{x}) - \frac{f(\bar{x})}{g(\bar{x})} \nabla g(\bar{x})\right]^T \eta(\tilde{x}, \bar{x}) < 0,$$

and so, it follows from (1) that $\sum_{j=1}^{m} \mu_j \nabla_1 h_j(\bar{x}, \bar{v}_j)^T \eta(\tilde{x}, \bar{x}) > 0$. Then, by the η -invexity of $h(\cdot, \bar{v}_j)$, we have

$$\sum_{j=1}^m \mu_j h_j(\widetilde{x}, \overline{v}_j) - \sum_{j=1}^m \mu_j h_j(\overline{x}, \overline{v}_j) > 0.$$

Since $\sum_{j=1}^{m} \mu_j h_j(\bar{x}, \bar{v}_j) = 0$, we have $\sum_{j=1}^{m} \mu_j h_j(\tilde{x}, \bar{v}_j) > 0$, which is contradiction, since $\mu_j \ge 0$, $j = 1, \dots, m$ and \tilde{x} is a feasible solution of (FP). Consequently, \bar{x} is a robust solution of (FP).

We formulate a Mond-Weir type robust dual problem (FD) for (FP).

p

(FD) maximize

subject to
$$\nabla f(x) - p \nabla g(x) + \sum_{j=1}^{m} \mu_j \nabla_1 h_j(x, v_j) = 0, \quad (2)$$
$$f(x) - pg(x) \ge 0,$$
$$\sum_{j=1}^{m} \mu_j h_j(x, v_j) \ge 0,$$
$$v_j \in V_j, \ \mu_j \ge 0, \ j = 1, \cdots, m.$$

Let $V = V_1 \times \cdots \times V_m$.

Theorem 2.3. (Weak Duality) Let $x \in F$ and $(\bar{x}, \bar{v}, \bar{\mu}, \bar{p}) \in \mathbb{R}^n \times V \times \mathbb{R}^m \times \mathbb{R}$ be feasible for (FD). Suppose that $f(\cdot)$ and $-g(\cdot)$ is (V, ρ) -invex at \bar{x} and $h_j(\cdot, \bar{v}_j), j = 1, \cdots, m$ are η -invex at \bar{x} with respect to the same η and $\rho \|\theta(x, \bar{x})\|^2 \geq 0$, then

$$\frac{f(x)}{g(x)} \ge \bar{p}.$$

Proof. Let x be any feasible for (FP) and let $(\bar{x}, \bar{v}, \bar{\mu}, \bar{p})$ be any feasible for (FD). Suppose that

$$\begin{aligned} &\frac{f(x)}{g(x)} - \bar{p} < 0, \text{ that is, } \quad f(x) - \bar{p}g(x) < 0. \end{aligned}$$

Since $f(\bar{x}) - \bar{p}g(\bar{x}) \ge 0, \ f(x) - \bar{p}g(x) < f(\bar{x}) - \bar{p}g(\bar{x}).$ Since $\alpha(x, u) > 0, \\ &\alpha(x, u)[f(x) - f(u)] - \bar{p}\alpha(x, u)[g(x) - g(\bar{x})] < 0. \end{aligned}$

By the (V, ρ) -invexity of $f(\cdot) - \bar{p}g(\cdot)$ at \bar{x} ,

$$\left[\nabla f(\bar{x}) - \bar{p}\nabla g(\bar{x})\right]^T \eta(x,\bar{x}) + \rho \|\theta(x,\bar{x})\|^2 < 0.$$

Since $\rho \|\theta(x, \bar{x})\|^2 \ge 0$,

$$\left[\nabla f(\bar{x}) - \bar{p}\nabla g(\bar{x})\right]^T \eta(x,\bar{x}) < 0.$$
(3)

Since $\sum_{j=1}^{m} \bar{\mu}_j h_j(\bar{x}, \bar{v}_j) \ge \sum_{j=1}^{m} \bar{\mu}_j h_j(x, \bar{v}_j)$, by the η -invexity $h_j(\cdot, \bar{v}_j)$ at \bar{x} ,

$$\left[\sum_{j=1}^{m} \bar{\mu}_j \nabla_1 h_j(\bar{x}, \bar{v}_j)\right]^T \eta(x, \bar{x}) \le 0.$$
(4)

From (3) and (4),

$$\left[\nabla f(\bar{x}) - \bar{p}\nabla g(\bar{x}) + \sum_{j=1}^{m} \bar{\mu}_j \nabla_1 h_j(\bar{x}, \bar{v}_j)\right]^T \eta(x, \bar{x}) < 0,$$

which contradicts (2).

638

Theorem 2.4. (Strong Duality) Let \bar{x} be a robust solution of (FP). Assume that the Extended Mangasarian-Fromovitz constraint qualification holds at \bar{x} . Then, there exist $(\bar{v}, \bar{\mu}, \bar{p})$ such that $(\bar{x}, \bar{v}, \bar{\mu}, \bar{p})$ is feasible for (FD). Moreover, if the weak duality holds, then $(\bar{x}, \bar{v}, \bar{\mu}, \bar{p})$ is a robust solution of (FD).

Proof. By Theorem 2.1, there exist $\bar{\mu}_j \ge 0$, $j = 1, \dots, m$, $\bar{v}_j \in V_j$, $j = 1, \dots, m$ such that

$$\nabla f(\bar{x}) - \frac{f(\bar{x})}{g(\bar{x})} \nabla g(\bar{x}) + \sum_{j=1}^{m} \bar{\mu}_j \nabla_1 h_j(\bar{x}, \bar{v}_j) = 0,$$

$$\bar{\mu}_j h_j(\bar{x}, \bar{v}_j) = 0, \ j = 1, \cdots, m.$$

Let $\bar{p} = \frac{f(\bar{x})}{g(\bar{x})}$. Then $(\bar{x}, \bar{v}, \bar{\mu}, \bar{p})$ is a feasible for (FD). By Theorem 2.2, $\frac{f(\bar{x})}{g(\bar{x})} \ge \tilde{p}$, for any feasible solution $(\tilde{x}, \tilde{u}, \tilde{v}, \tilde{\mu}, \tilde{p})$ for (FD). Since $\frac{f(\bar{x})}{g(\bar{x})} = \bar{p}$, $\bar{p} \ge \tilde{p}$. Hence $(\bar{x}, \bar{v}, \bar{\mu}, \bar{p})$ is a solution of (FD).

References

- D. Bertsimas, D. Brown, Constructing uncertainty sets for robust linear optimization, Oper. Res. 57(2009), 1483-1495.
- [2] A. Ben-Tal, A. Nemirovski, Robust-optimization-methodology and applications, Math. Program., Ser B 92(2002), 453–480.
- [3] D. Bertsimas, D. Pachamanova, M. Sim, Robust linear optimization under general norms, Oper. Res. Lett. 32(2004), 510-516.
- [4] V. Jeyakumar, G. Li, G. M. Lee, Robust duality for generalized convex programming problems under data uncertainty, Nonlinear Anal. 75(2012), 1362–1373.
- [5] M. H. Kim, Robust duality for generalized invex programming problems, Commun. Korean Math. Soc. 28(2013), 419-423.
- [6] M. H. Kim and G. S. Kim, Optimality conditions and duality in fractional robust optimization problems, East Asian Math. J. 31(2015), 345-349.
- [7] H. Kuk, G. M. Lee and D. S. Kim, Nonsmooth multiobjective programs with (V, ρ) invexity, Indian Journal of Pure and Applied Mathematics **29** (1998), 405-412.

Gwi Soo Kim

DEPARTMENT OF APPLIED MATHEMATICS, PUKYUNG NATIONAL UNIVERSITY, BUSAN 608-737, KOREA

E-mail address: gwisoo1103@hanmail.net

Moon Hee Kim

DEPARTMENT OF REFRIGERATION ENGINEERING, TONGMYONG UNIVERSITY, BUSAN 608-711, KOREA

E-mail address: mooni@tu.ac.kr