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OPTIMIZATION AND IDENTIFICATION FOR
THE NONLINEAR HYPERBOLIC SYSTEMS

YonNg HaN KaNG

ABSTRACT. In this paper we consider the optimal control problem
of both operators and parameters for nonlinear hyperbolic systems.
For the dentification problem, we show that for every value of the
parameter and operators, the optimal control problem has a solution.
Moreover we obtain the necessary conditions of optimality for the op-
timal control problem on the system.

1. Introduction

- The optimal control problems have been exfensively studied by
many authors [1, 3, 5, 7, 10, 13, 14, 15 and the references cited therein]
and also identification problem for damping paramelers in the second
order hyperbolic systems have been dealt with by many authors [4, 6,
8,12, and the references cited therein).

In this paper, we consider the following control systems;

¥+ As(t, @)y + A1t @y + N*g(Ny) + By = f(t,9)
(L.1) y(g, B)(0) =yo €V, ¥ (g, B)(0) =y € H,
qe Qm) B € Pa,b
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and the cost functional given by the quadratic form

1
(12 J(a, B) = 51(Cylg, B) - zallis.

Here A;(¢,q) and As(t, q) are differential operators containing unknown
parameter ¢ € (), and there are given by some bilinear forms on
Hilbert spaces, N*g(Ny) is a nonlinear term, B €P, is an operator,
P is a suitable space, f is a forcing term, C is an observation operator
defined on an observation space M and 24 is a desired value.

The optimal control problem subject to (1.1} with (1.2) is to find
optimal pairs (§, B) € Q. X P, such that

(BB xPes J{(q.-B) = J(¢, B).

Recently, inspired by the optimal control theoretical studies of Euler-
Bernoulli Beam Equations with Kelvin-Voigt Damping, and Love-Kirch-
hoff Plate Equations with various damping terms, these appeared nu-
merous paper studying optimal control theory and identification prob-
lems. In Banks et al.[4], Banks and Kunisch [5}, they treated the
existence of the optimal control {or minimizing parameters) by using
the methods of approximations, but they didn't deal with the nec-
essary conditions (or characterizations) on them. When Ai(t,q) =
vA2(t,q),y > 0 and N*g(Ny) = 0 in (1.1), the identification problem
estimating ¢ via output least-square identification problem is studied
by Ahmed [1,2] based on the transposition method.

In the nonlinear parabolic type case, Papageorgiou [11] treated with
optimal control problems contained parameter and control. But we
deal with the second order nonlinear hyperbolic systems.

In this paper we will study the identification problem to the system
(1.1) with (1.2) and the existence of weak solution for the system (1.1}.
It is not easy to find the optimal control pairs (4, B) belonging to a
general admissible set @Q,, X Py of both parameters and operators
subject to (1.1) with (1.2). Hence we will show the existence of such
(g, B) when Q,, x P, is a compact subset of a topological space.
Moreover, we obtain the necessary conditions of optimality for the
optimal control problem.
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2. Preliminaries

Let X be a real Hilbert spaces. (-,-)x and || - ||x denote the in-
ner product and the induced norm on X. X* the dual space of X
and (-,-)x+ x denotes the dual pairing between X* and X. Let us
introduce underlying Hilbert spaces to describe nonlinear hyperbolic
systems. Let H be a real pivot Hilbert space, its norm {{ - ||z7 by |- {&.
Throughout this paper we assume there is a sequence of real separable
Hilbert spaces Vi, Vs, Vi*, V¥ forming a Gelfand quintuple satisfying
Vi =V - H=H*— Vy — V{*. And also we assume that the
embedding V; < V5 is dense and continuous with l{¢l|lv, < cl|d|lv,
for ¢ € V] and Vo — H is a densely compact embedding. From
now on, we write V; = V for convenience of notation. We assume
that the equalities (¢, p)v- v = (¢, ¥)vy 1, for ¢ € Vo € V and
(,0)vv v = (¢,9)y for ¢ € H,p € V. We shall give an exact de-
scription of nonlinear hyperbolic systems. We suppose that  is alge-
braically contained in a linear topological vector space with topology
Tm a0d Qm = {Q, T, ) is compact. Let £(X, Z) denote the space of all
bounded linear operators from X to Z and A* the dual of the operator
A. Consider the space of operators £{V,V5") and suppose that it is
given the strong sirong (weak) operator topology which we denote by
Tso{Two)- Given this topology, Ls(V,V5') = (L(V,V55), o) Is a locally
convex linear topological vector space which 1s sequentially complete.
For some b > 0 and a € R, let

Pap ={B e L(V,V5) |Bllcevvy) < b,
(B:L’, .’II)V~’V + a]x|H >0,Vx € V}.

Note that P, is compact in L{V, V). Let I = [0,7], T > 0 be fixed
and t € [0,T). Let ¢ € Qm.
We will need following hypotheses on the data.
H(A) A, : I xQpn — L(V,,V,) is an operator (i = 1,2).
(1) a.(t, g3 6, 0)=0.(L, q; 0, ¢), where a.{t, 48, 0)=(A.(L, )b, P}v; 1.,
Vo, pc V.
(2) There exists ¢;1 > 0 such that |a, (2, ¢;¢, ¢)| < ealldllvillellv,,
Vo, peV, .
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(3) There exist o, > 0 and A, € R such that a,(t, ¢; ¢, @) v Afuny;
a.|{¢il},, Vo € V..
(4) The function t - a,(t, q; ¢, ) is continuously differentiniv n
[0, 7.
(B) There exists ¢,2 > 0 such that [a)(f,q; ¢, 0)| < colley
Vo, € V,, where’ = & and o[(t,¢; ¢, ) = (A} (t. ). vj: - v,
H({f) f : I X Qpn — Vg is the forcing term such that i »: €
L0, T; V).
H(N) N :V, - H is a linear operator such that N € £L{(V;, I} » h
Nl < V& l¢llv,, k. is constant and the range ot N ¢ . v is
dense in H.

H(g) g : H — H is a continuous nonlinear mapping ol rea! ey, di-
ent(or potential) type such that
(1) llg(@)il < e1l||l + ¢2, ¢ € H and for some constant ¢, ..
(2) lig(w) —g(S)i < callp — i, v, ¢ € H and for some cowsi- i c3.
We consider the following problem for nonlinear hyperbuic sy .ems
of the form :

Iy

(2.1) Y 4+ Aa(t, @)y + Ai(t, q)y + N*g(Ny) + By = f{/,9)

(2.2) y(g, B)(0) =y € V,4/(g, B)(0) = 51 € H,
q < Qm:B € Pa,b&

d d?
where 3/ = —y-,y" . —2?2

We define a Hilbert space, which will be a space of solutions, as
following;

W(0,T) = {yly € L*0,T; V),y' € L*(0,T;Va),y’ € L*(0, T;V*)}

with an inner product

(w1, v2)wio =l {(WL(t),5(t)v + (4 (0), ¥5(6))va + (¥} (@), w4 (D)) v- Yt
and the induced norm

L
¥llwor = (“y”iﬁ(oy),w + ”3/'“%2(0,7‘;1/2) + ”y”“i%u,T,v'))"’-
We denote by D(0,T) the space of distributions on (0,T).
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DEFINITION 2.1. A function y is said to be a weak solution of (2.1)-
(2.2) if y € W(0,T) and y satisfies
<y”(')a ¢>V',V + (1.2(', q; y,()’(b) + a’l('v q; y()v d)) + (g(Ny())’ N¢>H
+ (By()’ ¢>V",V = (f(’q)!d))V{,szv(b € V in the sense of D(01 T)a

d
¥(0,B)0) =w €V, 2 (¢, B)(0) =11 € H, ¢ € Qm, B Pay.
By Definition 2.1 it is verificd that a weak solution y of (2.1) satisfies

T
/0 (" (1) + As(t, @)y’ (t) + A1(t, q)y(t) + N*g(Ny(t))

T
+ By(t)’¢(t))vz‘,ngt = / (f(th)’ ¢(t)>V2‘,V2dta V¢ € L2(0, T; %)‘
0
We state the existence and uniqueness results of a weak solution of

(2.1)-(2.2).

THEOREM 2.1. If H(A), H(f), H(N) and H(g) hold. Then the
system

¥’ + As(t, )y + Ai(t, @)y + N"g(Ny)
(2.3) + By = f(t,q) in (0,T)
Yg, B)(0) =y €V, ¢/ (¢, B)(O) =91 € H,
q € Qma Be Pa,b
has a unique weak soluton y € W(0,T) N C(0,T;V) nCY0,T; H).
Here the concept of a weak solution for (2.3) is defined as
W Chove v +a2(, 09/ (), 0) +ar(, ¢ y(),0) + (9(Ny()), Ny
+(By(), p)vev = (F(-,9), O)vp 1o, VO € V in the sense of D'(0,T)

with the initwal conditions y{q,B)(0) = yo € V, 4 (q,B)(0) = 1
€ H, €EQy, BEP,yy.

PROOF. We can prove by using the method Lions {9] and Ha [8].
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3. Existence of both parameters
and operators for optimality

In this section we consider the optimal control problem for the fol-
lowing system:
¥+ Aa(t, q)y + Ault, @)y + N*g(Ny)
+ By = f(t,q) in (0,T)
¥(, B)(0) =y €V, ¥/ (¢, B)(0) = 41 € H,
qc€ Qma Be pa,bv
Note that since there is a unique solution y to (3.1) for given (¢, B) €
Qm X Pa,p, we have a well-defined mapping y = y(q, B) of Qm X Pap
into W (0, 7).
We often call (3.1) the state equation and y(g, B) the state with

respect to (3.1). Let us consider a quadratic cost functional attached
to (2.3) as

1
(62)  J(@B) = 3lICue B) - zallks, (@ B) € Qm % Pap,

where M is a Hilbert space of observations, C € L{(W(0,T), M) is an
observer and z, is a desired value belonging to M. Our main aim is to
find (g, B) € Qm X Pqp satisfying

3.3 J(g,B) = i J(q, B
&9 @B = o280, SO )

and to give a characterization of such (g, B). We call (¢, B) the optimal
pairs to the system (3.1) and (3.2). Furthermore, we will give an
assumption to a,(t,¢; ¢,9),i = 1,2 and f:

H(A) ¢ — a,(t,q;6¢,¢) : Qm — Riscontinuous forallt € [0,7T7,¢,¢ €
V.

H(f)1 ¢ — f(,9) : Q. — V5 is continuous.
Note that for each g € @, @, @ € V; the following equalities hold :

sup la,(t,¢;4,0) = sup [(A.(,9)¢,,9)ve vl = ||A:(t, @)dllve,
llelly, =1 llellv, =1

(3.1)

whence the assumption H{A); and the above equality imply that || A;: (¢, ¢)¢|
is continuous on g.
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LEmMa 3.1. If H(A), H(f), H(N), H(A), and H(f); hold. Then
y(q,B) € C(Qu X Pap, W(0,T)) is strongly continuous on (q, B).
PROOF. It can be proved by using the method of Ahemd|2] and
Hal[8].

THEOREM 3.1. If H(A), H(f), H(N), H(A) and H(f); hold. Then
there is at least one optimal pairs (g, B) if Qm X Payp is compact.

PROOF. It is clear from Lemma 3.1 and continuity of norm.

REMARK. We can the operator B to be function of time by taking
for the admissible the set

Pos = {B € Loo{I,L{V,V3)) : ess sup{||B(t)}| vz, t €T } <,
and (B(t)¢, vy v +al¢|}; > 0ae. on I},

where b > 0 and @ € R. In this case, replacing 'Pg’b instead of P, 3, we
obtain the same results.

4. Necessary condition of optimnality
for both parameters and operatars

Here we present the necessary conditions (the minimizing condi-
tions) for optimal pairs (G, B) € @ X Pep to the system (3.1) with
the cost functional J(p, B) given by (3.2). If J(p, B) is Gateaux differ-
entiable at (g, B) in the dircction (g— ¢, B— B), the necessary condition
on (g, B) is characterized by the following inequality

(4.1) DJ(q,B;q—§,B—B)>0, Y(q,B) € Qu X Pays,

where DJ(g,B;q—§, B — B)_ denotes the Gateaunx derivative at (g, B)
in the direction (¢ — ¢, B — B).
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Note that since J(gq, B) composed of the term y(g, B), the Gateaux
differentiability of J(g, B) follows from that of y(q, B). Hence to obtain
that of y(g, B) we will need the following condition:

H(A)s q— A,(-,q) is Gateaux differentiable for all t and DA, (¢, q)(p) =
DA,(t,q;p) € L2(0,T; L(V;,V*)) for all ¢ € Qu, where DA, (2, ¢; p)
denotes the Giteaux derivative at ¢ in the direction of p.

H{g)1 For any ¢ € H the Fréchet derivative of g exists and satisfies
go(p) € L(H, H) with ||g,(0)||z(m,m) < €4, where g,{(p) is the
Fréchet derivative of g at ¢ and ¢4 is constant.

H(f)2 ¢ — f(t,q) is Gateaux differentiable for all ¢ and f,(¢,q¢)p =
fo(t,q;p) € L*(0,T, V), where fq(t,q;p) is Gateaux derivative
at g in the direction of p.

LEMMA 4.1. Assume that the conditions imn Theorem 2.1, H(A)1,
H(A)2, H(f)1, H(f)2 and H(g), are satisfied. Then y(q, B) is weakly
Giteauz differentiable at (q, B) in the direction (¢q—§, B—B), and if we
denote the Gateauz derivative of y(q, B) by » = Dy(q, B;q—q, B — B),
it satisfies the following Cauchy problem:

2"+ Ao (8, 9)2 + A1(t,9)z + N*g,(Ny(g, B)) Nz + Bz

= —DAy(t,q;9 — @)y (¢, B) — DAL(t, G, 9 — §)y(g, B)
+(B~B)y(g,B) + f,(t,¢;9 —q) in (0,T)

2(0) = 2/(0) = 0.

(4.2)

PROOF. We can prove by using the method of Ahemd [2] and Park
et al. {12].

By Lemma 4.1, the cost functional J(q, B) is Gateaux differentiable
at (g, B) in the direction (¢ — 4, B— B), and so, the condition (4.1) is
rewritten by
(4.3)
DJ(q,B;q—q,B~B)= (C*"AM(Cy(q, B) ~ za), ZYW(0,T),W(0,T)
+{C*Am(Cy(q, B) — 24),y8(q, B; B — B))w-,1),wior) = 0,

v (Qau) € Qm X Pa.,ba
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where z is the unique weak solution to (4.2), C* € L{(M*, W*(0,T)) is

the adjoint operator of C and Aps is the canonical isomorphism of M
onto M™ in the sense that

(ii) {|Apllaee = [|]|ar for all ¢ € M.

In order to avoid the complexity of setting up observation spaces,
we consider the following two types of distributive and terminal value
observations in time sense. that is, the following cases :

(i) wetake C) € £L(L?(0,T;V;), M) and observer z{(gq, B} = C1y(q, B);
(i1) we take Cy € L{H, M) and observer z(gq, B) = Cay{q, B{T).
4.1. The case where () € L(L*(0,T;V,), M)
In this case the cost functional is given by

1
J(Qi‘B) = 5”0137’(% B) - zd“%lrvq € Qm X Pa,b;

and then the necessary condition (4.3) is equivalent to

T
/0 (CT A (Cy(@, BYE) — 2a),y5(@ B; B — B))yy wydt

4.4 T )
(4.4) + /0 (C7 A (Cry(d, BY(2) — 2a), 2(8))vy vadt > 0,

v(qu) € Qm X ?a.,ba
Let us introduce an adjoint state (g, B) satisfying
n'(q, B) — A2(t, ) (¢, B) + [(A1(t,9) — A3(t.9)
+(N"g,(Ny(q, B)N)* + B*In(q, B)

= CYAm(C1y(q, B) — za),
n(g, B)(T) =0, 7'(§, BYT) =0.

(4.5)

Since CF Ap{Cry(G, B) — z4) € L2(0, T; Vi) and Ab(¢,q) € L°°(0,T;
L(V,, V), the equation {4.5) is well-posed and permits a unique weak
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solution (g, B) € W(0,T) if we consider the change of the time vari-

able as £ — T — {. Multiplying (4.5) by z, which is the weak solution
to (4.2), integrating it by parts after integrating it on [0, 7], we obtain

T
/0 (@ B)(8), 2 (8) + Aot D)2 () + [Ar(t, 3)
+ N*g,(Ny(q, B)(t))N + Blz(t))v» vdt
T
wey =) W@BO,-DAga— @B
- DAi(t,G 9 — @)y(g, B)(t))v- vdt
T
+ fo (n(d, B)(®), (B — Byy(g, B)(2)
+ fq(t:q_;q - q))V',th 2 0) V(LLB) 1S Qm X Pa,b-

From (4.3) and (4.4), we obtain the inequality
T
/0 (n(@ B)(t), 2"(¢) + Aa(t, 7 (1) + [Ar (£, )
+ N*gy(Ny(q, B)(t))N + Bl2(t))v- vdt
T
+ / (Cryn(q, B q — 4)(8), Cr(@, BY() — za)ds
T
- / (n(@, B)(®), ~DAs(t, G:q — D)y’ (@ B)H)
— DA(t,q;9 - Qy(q, B)(t))v- vdt
T
+ fo (g, B){1), (B — B)y(q, B)(t) + fo(t,G:9 — Q)}v- vt
T
+f0 {Crys(§, B; ¢ — 9)(1), C1y(q, B)(t) — z4)v- vdt > 0,

V(q, u) S Qm X Pa,b-

Here we used the inequality (4.4). Summarizing these we have the
following theorem.
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THEOREM 4.1. Assume that H(A), H(f), H(N), H(g), H(A)1, H(A)s,
H(fY1, H()2, H{g); hold. Then the optimal pairs (g, B) is charac-
terized by state and adjoint systems and ineguality:

y'(q, B) + A2(t, )y (4, B) + Ai(t, §)y(q, B) + N*g(Ny(q, B))
+ By(q,B) =+f(t,§) in (0,T)
y(q, B)(0) =y € V,4'(¢,B)(0) =y, € H,

1"(g, B) — A2(t, @)n'(q, B) + [(A:(t,9) — A5(2, )
+{N*g,(Ny(g, BYN)* + B*]n(g, B)
= CrAm(Cry(d, B) — za) in (0,T),
7(T,q) = 0,7 (T,q) =0,

’ T
/0 (1@, B)(0), (B - B)y(a, BY) + fult1:0 — D)v-wrdt
T
+ jo (Crys(@, B; B — B)(t), C1y(q, B)(b) — za)v~ vt

T
> fo (n(q, B)(1), DAz (¢, 30 — 9y (7, B)(D)
\ + DAl(tv 4,9 — Q)y(‘L B)(t))Vzvdf, V..(Q: u) € Qm X pa,b'

4.2. The case where Cy € L(H, M)
In this case the cost functional is given by

1
J(g, B) = 5liCaylq, BIT) — 2allass V(g B) € Qu X Pap,
the necessary condition (4.3) is equivalent to

(C3AMm(Coyle, BYT) — 2a),2(T))n
V(Qa B) € Qm X Pa,b-
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Let us introduce an adjoint state 7{g, B) satisfying

7"(q, B) — A2(t, @' (q, B) + [(A1(t, ) — 45(t, D)
+ (N*g,(Ny(g,2)N)* + B*In(g, B) = 0,

7(g, B)Y{(T) =0,

7' (q, BY{(T') = —C5Ap(Coy(q, BY(T) — 24)-

(4.8)

1t follows by the same reason as the case 4.1 that there is a unique weak
solution 7(g, B) € W(0,T'), because CyAp(Coy(q, BUT) — 2z4) € H.

THEOREM 4.2. We assume that H(A), H(f), H(N), H(g), H(A)1,
H(A)y, H(f)1, H(f)2 and H(g), hold. Then the optimal pairs (¢, B)
is characterized by state and adjoint systems and inequality:

¥'(q, B) + A2(t, @)y (a, B) + A1(¢,q)y(q, B) + N*g(Ny(g, B))
+ Bylq,B) = f(t,q) in (0,T),

y(QsB) =Y € Vay’(q_’B) =y € H,

7"(q, B) — A2(t, Q' (q, B) + ((A1(t, ) — 45(t, 7))
+ (N*g,(Ny(q, B)NY* + B*In(q, B)(T) =0,
7(4, B)(T) = 0,
' (q, BY(T) = —C35 Ap(Cay(q, BY(T) — za),
({C3(Cay(q, B)(T) ~ za)n

T
+ [ (B — B)y(q, B)(t) + folt,Gq — @), n(d, B)(t)yv- vl
T

o\

> [ (Daga- a0y B
L+ DAl(ta 4,9~ q_)y(‘i B)(t),??(ffa B)(t»V',thav(q) B) S Qm X Pa,b'

PROOF. We prove the inequality condition of optimal control only.
Multiplying (4.8) by z, which is a weak solution to (4.2), integrating it
by parts after integrating it on [0, t], we obtain
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(=(T), 7' (g, B)(T))mr + /0 T(n(q, BY(t), 2" (t) + A2(6, )2 (¢) + [(A(t, 9)
+ N*gy(Ny(q, B)($)N + Blz(t))v-,vat
= /0 T(n(q, B)(t), —DAs(t,4; ¢ — 9y’ (¢, B)(¢t)
— DA(t, 3,9 — Qy(q, B)(t))v- vt
+ fo ' {ng, B)(t), (B - Byy(q, B{t) + fo(t, G 9 — D)v- vt

+ (Z(T)’ —C;AM(CQ’Q(Q_, B)(T) - zd))H = 01
V(g,B) € Qm x Pap-

Hence from (4.7) and (4.8) we conclude that
(2(T), C3 A (Cay(a, f?)(T) - za))H )
+(y8(q, B;u — B)(T'), C5Am(Cay(q, BY(T) — za)u
- fo ' (0@ BY(£), —DAs (¢, 44 — )/ (3, B) (1)
— DAL (¢, G5 9 — Q)y(d, B)())v-,vdt
+ ]:(’0(@ B)(t),(B — B)y(q, B)(t) + fo(t, G0 — D)v- vt

+ (yB(‘ia B; B— B)(T)achM(chy(qa B)(T) - 2d)H > 0,
v (QJ B) € Q‘m x Pa,b-
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