OPTIMIZATION AND IDENTIFICATION FOR THE NONLINEAR HYPERBOLIC SYSTEMS

Yong Han Kang

Abstract

In this paper we consider the optimal control problem of both operators and parameters for nonlinear hyperbolic systems. For the identification problem, we show that for every value of the parameter and operators, the optimal control problem has a solution. Moreover we obtain the necessary conditions of optimality for the optimal control problem on the system.

1. Introduction

The optimal control problems have been extensively studied by many authors $[1,3,5,7,10,13,14,15$ and the references cited therein] and also identification problem for damping parameters in the second order hyperbolic systems have been dealt with by many authors $[4,6$, 8,12 , and the references cited therein].

In this paper, we consider the following control systems;

$$
\left\{\begin{array}{l}
y^{\prime \prime}+A_{2}(t, q) y^{\prime}+A_{1}(t, q) y+N^{*} g(N y)+B y=f(t, q) \tag{1.1}\\
y(q, B)(0)=y_{0} \in V, y^{\prime}(q, B)(0)=y_{1} \in H, \\
q \in Q_{m}, B \in \mathcal{P}_{a, b}
\end{array}\right.
$$

[^0]and the cost functional given by the quadratic form
\[

$$
\begin{equation*}
J(q, B)=\frac{1}{2}\left\|C y(q, B)-z_{d}\right\|_{M}^{2} . \tag{1.2}
\end{equation*}
$$

\]

Here $A_{1}(t, q)$ and $A_{2}(t, q)$ are differential operators containing unknown parameter $q \in Q_{m}$ and there are given by some bilinear forms on Hilbert spaces, $N^{*} g(N y)$ is a nonlinear term, $B \in \mathcal{P}_{a, b}$ is an operator, $\mathcal{P}_{a, b}$ is a suitable space, f is a forcing term, C is an observation operator defined on an observation space M and z_{d} is a desired value.

The optimal control problem subject to (1.1) with (1.2) is to find optimal pairs $(\bar{q}, \bar{B}) \in Q_{m} \times \mathcal{P}_{a, b}$ such that

$$
\inf _{(q, B) \in Q_{m} \times \mathcal{P}_{a, b}} J(q . B)=J(\bar{q}, \bar{B}) .
$$

Recently, inspired by the optimal control theoretical studies of EulerBernoulli Beam Equations with Kelvin-Voigt Damping, and Love-Kirchhoff Plate Equations with various damping terms, these appeared numerous paper studying optimal control theory and identification problems. In Banks et al.[4], Banks and Kunisch [5], they treated the existence of the optimal control (or minimizing parameters) by using the methods of approximations, but they didn't deal with the necessary conditions (or characterizations) on them. When $A_{1}(t, q) \equiv$ $\gamma A_{2}(t, q), \gamma>0$ and $N^{*} g(N y)=0$ in (1.1), the identification problem estimating q via output least-square identification probiem is studied by Ahmed [1,2] based on the transposition method.

In the nonlinear parabolic type case, Papageorgiou [11] treated with optimal control problems contained parameter and control. But we deal with the second order nonlinear hyperbolic systems.

In this paper we will study the identification problem to the system (1.1) with (1.2) and the existence of weak solution for the system (1.1). It is not easy to find the optimal control pairs (\bar{q}, \bar{B}) belonging to a general admissible set $Q_{m} \times \mathcal{P}_{a, b}$ of both parameters and operators subject to (1.1) with (1.2). Hence we will show the existence of such (\bar{q}, \bar{B}) when $Q_{m} \times \mathcal{P}_{a, b}$ is a compact subset of a topological space. Moreover, we obtain the necessary conditions of optimality for the optimal control problem.

2. Preliminaries

Let X be a real Hilbert spaces. $(\cdot, \cdot)_{X}$ and $\|\cdot\|_{X}$ denote the inner product and the induced norm on $X . X^{*}$ the dual space of X and $\langle\cdot, \cdot\rangle_{X^{*}, X}$ denotes the dual pairing between X^{*} and X. Let us introduce underlying Hilbert spaces to describe nonlinear hyperbolic systems. Let H be a real pivot Hilbert space, its norm $\|\cdot\|_{H}$ by $|\cdot|_{H}$. Throughout this paper we assume there is a sequence of real separable Hilbert spaces $V_{1}, V_{2}, V_{1}^{*}, V_{2}^{*}$ forming a Gelfand quintuple satisfying $V_{1} \hookrightarrow V_{2} \hookrightarrow H \equiv H^{*} \hookrightarrow V_{2}^{*} \hookrightarrow V_{1}^{*}$. And also we assume that the embedding $V_{1} \hookrightarrow V_{2}$ is dense and continuous with $\|\phi\|_{V_{2}} \leq c\|\phi\|_{V_{1}}$ for $\phi \in V_{1}$ and $V_{2} \hookrightarrow H$ is a densely compact embedding. From now on, we write $V_{1}=V$ for convenience of notation. We assume that the equalities $\langle\phi, \varphi\rangle_{V^{*}, V}=\langle\phi, \varphi\rangle_{V_{2}^{*}, V_{2}}$ for $\phi \in V_{2}^{*}, \varphi \in V$ and $\langle\phi, \varphi\rangle_{V},, V=(\phi, \varphi)_{H}$ for $\phi \in H, \varphi \in V$. We shall give an exact description of nonlinear hyperbolic systems. We suppose that Q is algebraically contained in a linear topological vector space with topology τ_{m} and $Q_{m}=\left(Q, \tau_{m}\right)$ is compact. Let $\mathcal{L}(X, Z)$ denote the space of all bounded linear operators from X to Z and A^{*} the dual of the operator A. Consider the space of operators $\mathcal{L}\left(V, V_{2}^{*}\right)$ and suppose that it is given the strong strong (weak) operator topology which we denote by $\tau_{s o}\left(\tau_{w o}\right)$. Given this topology, $\mathcal{L}_{s}\left(V, V_{2}^{*}\right) \equiv\left(\mathcal{L}\left(V, V_{2}^{*}\right), \tau_{s o}\right)$ is a locally convex linear topological vector space which is sequentially complete. For some $b>0$ and $a \in R$, let

$$
\begin{aligned}
& \mathcal{P}_{a, b}=\left\{B \in \mathcal{L}\left(V, V_{2}^{*}\right):\|B\|_{L_{(}\left(V, V_{2}^{*}\right)} \leq b,\right. \\
& \\
& \left.\langle B x, x\rangle_{V^{*}, V}+a|x|_{H} \geq 0, \forall x \in V\right\} .
\end{aligned}
$$

Note that $\mathcal{P}_{a, b}$ is compact in $\mathcal{L}\left(V, V_{2}^{*}\right)$. Let $I=[0, T], T \geq 0$ be fixed and $t \in[0, T]$. Let $q \in Q_{m}$.

We will need following hypotheses on the data.
$H(A) A_{2}: I \times Q_{m} \rightarrow \mathcal{L}\left(V_{2}, V_{2}\right)$ is an operator ($i=1,2$).
(1) $a_{2}(t, q ; \phi, \varphi)=a_{2}(t, q ; \varphi, \phi)$, where $a_{2}(t, q ; \phi, \varphi)=\left\langle A_{2}(t, q) \phi, \varphi\right\rangle_{V_{2}^{*}, V_{2}}$, $\forall \phi, \varphi \in V_{\imath}$.
(2) There exists $c_{21}>0$ such that $\left|a_{2}(t, q ; \phi, \varphi)\right| \leq c_{21}\|\phi\|_{V_{2}}\|\varphi\| V_{V_{3}}$, $\forall \phi, \varphi \in V_{2}$.
(3) There exist $\alpha_{i}>0$ and $\lambda_{i} \in R$ such that $a_{\imath}(t, q ; \phi, \varphi)\left|\lambda_{q}\right|_{i n} \geq$ $\alpha_{i}\|\phi\|_{V_{t}}^{2}, \forall \phi \in V_{2}$.
(4) The function $t \mapsto a_{2}(t, q ; \phi, \varphi)$ is continuously differentiais! n $[0, T]$.
(5) There exists $c_{22}>0$ such that $\left.\left|a_{2}^{\prime}(t, q ; \phi, \varphi)\right| \leq c_{22}| | \sigma_{1} \mid\right\} \quad \cdots$, $\forall \phi, \varphi \in V_{i}$, where ${ }^{\prime}=\frac{d}{d t}$ and $a_{2}^{\prime}(t, q ; \phi, \varphi)=\left\langle A_{2}^{\prime}(t, q) \Leftrightarrow . /\right\rangle:{ }^{\bullet}, V_{2}$, $H(f) f: I \times Q_{m} \rightarrow V_{2}^{*}$ is the forcing term such that \in $L^{2}\left(0, T ; V_{2}^{*}\right)$.
$H(N) N: V_{2} \rightarrow H$ is a linear operator such that $N \in \mathcal{L}\left(V_{2}, I\right)^{w}$ h $\|N \varphi\| \leq \sqrt{k_{2}}\|\varphi\|_{V_{2}}, k_{2}$ is constant and the range of $N u, v$. is dense in H.
$H(g) g: H \rightarrow H$ is a continuous nonlinear mapping of rea pidient(or potential) type such that
(1) $\|g(\varphi)\| \leq c_{1}\|\varphi\|+c_{2}, \varphi \in H$ and for some constant c_{1}, c.
(2) $\|g(\varphi)-g(\phi)\| \leq c_{3}\|\varphi-\phi\|, \varphi, \phi \in H$ and for some cressi inn c_{3}.

We consider the following problem for nonlinear hyperbune sy ems of the form :

$$
\begin{equation*}
y^{\prime \prime}+A_{2}(t, q) y^{\prime}+A_{1}(t, q) y+N^{*} g(N y)+B y=f(f, q) \tag{2.1}
\end{equation*}
$$

$$
\begin{gather*}
y(q, B)(0)=y_{0} \in V_{,} y^{\prime}(q, B)(0)=y_{\downarrow} \in H \tag{2.2}\\
q \in Q_{m}, B \in \mathcal{P}_{a, b}
\end{gather*}
$$

where $y^{\prime}=\frac{d y}{d t}, y^{\prime \prime}=\frac{d^{2} y}{d t^{2}}$.
We define a Hilbert space, which will be a space of solutions, as following;

$$
W(0, T)=\left\{y \mid y \in L^{2}(0, T ; V), y^{\prime} \in L^{2}\left(0, T ; V_{2}\right), y^{\prime \prime} \in L^{2}\left(0, T ; V^{*}\right)\right\}
$$

with an inner product
$\left(y_{1}, y_{2}\right)_{W(0, T)}=\int_{0}^{T}\left\{\left(y_{1}(t), y_{2}(t)\right)_{V}+\left(y_{1}^{\prime}(t), y_{2}^{\prime}(t)\right)_{V_{2}}+\left(y_{1}^{\prime \prime}(t), y_{2}^{\prime \prime}(t)\right)_{V} \cdot\right\} d t$ and the induced norm

$$
\|y\|_{W(0, T)}=\left(\|y\|_{\left.L^{2}(0, T), V\right)}^{2}+\left\|y^{\prime}\right\|_{L^{2}\left(0, T ; V_{2}\right)}^{2}+\left\|y^{\prime \prime}\right\|_{L^{2}\left(0, T, V^{*}\right)^{2}}^{2} .\right.
$$

We denote by $\mathcal{D}(0, T)$ the space of distributions on $(0, T)$.

Definition 2.1. A function y is said to be a weak solution of (2.1)(2.2) if $y \in W(0, T)$ and y satisfies

$$
\begin{aligned}
& \left\langle y^{\prime \prime}(\cdot), \phi\right\rangle_{V}, V \\
& +\left\langle B y(\cdot), \phi a_{2}\left(\cdot, q ; y^{\prime}(\cdot), \phi\right)+a_{1}(\cdot, q ; y(\cdot), \phi)+\langle g(N y(\cdot)), N \phi\rangle_{H}\right. \\
& y(q, B)(0)=y_{0} \in V, \frac{d y}{d t}(q, B)(0)=y_{1} \in H, q \in Q_{m}, B \in \mathcal{P}_{a, b} .
\end{aligned}
$$

By Definition 2.1 it is verificd that a weak solution y of (2.1) satisfies

$$
\begin{aligned}
& \int_{0}^{T}\left\langle y^{\prime \prime}(t)+A_{2}(t, q) y^{\prime}(t)+A_{1}(t, q) y(t)+N^{*} g(N y(t))\right. \\
& +B y(t), \phi(t)\rangle_{V_{2}^{*}, V_{2}} d t=\int_{0}^{T}\langle f(t, q), \phi(t)\rangle_{V_{2}, V_{2}} d t, \forall \phi \in L^{2}\left(0, T ; V_{2}\right) .
\end{aligned}
$$

We state the existence and uniqueness results of a weak solution of (2.1)-(2.2).

Theorem 2.1. If $H(A), H(f), H(N)$ and $H(g)$ hold. Then the system

$$
\left\{\begin{array}{l}
y^{\prime \prime}+A_{2}(t, q) y^{\prime}+A_{1}(t, q) y+N^{*} g(N y) \tag{2.3}\\
\quad+B y=f(t, q) \text { in }(0, T) \\
y(q, B)(0)=y_{0} \in V, y^{\prime}(q, B)(0)=y_{1} \in H \\
q \in Q_{m}, B \in \mathcal{P}_{a, b}
\end{array}\right.
$$

has a unique weak solutzon $y \in W(0, T) \cap C(0, T ; V) \cap C^{1}(0, T ; H)$. Here the concept of a weak solution for (2.3) is defined as

$$
\begin{aligned}
& \left\langle y^{\prime \prime}(\cdot), \phi\right\rangle_{V^{*}, V}+a_{2}\left(\cdot, q ; y^{\prime}(\cdot), \phi\right)+a_{1}(\cdot, q ; y(\cdot), \phi)+\langle g(N y(\cdot)), N \phi\rangle_{H} \\
& +\langle B y(\cdot), \phi\rangle_{V^{*}, V}=\langle f(\cdot, q), \phi\rangle_{V_{2}, V_{2}}, \forall \phi \in V \text { in the sense of } \mathcal{D}^{\prime}(0, T)
\end{aligned}
$$

with the initzal conditions $y(q, B)(0)=y_{0} \in V, y^{\prime}(q, B)(0)=y_{1}$ $\in H, q \in Q_{m}, B \in \mathcal{P}_{a, b}$.

Proof. We can prove by using the method Lions [9] and Ha [8].

3. Existence of both parameters and operators for optimality

In this section we consider the optimal control problem for the following system:

$$
\left\{\begin{array}{c}
y^{\prime \prime}+A_{2}(t, q) y^{\prime}+A_{1}(t, q) y+N^{*} g(N y) \tag{3.1}\\
+B y=f(t, q) \text { in }(0, T) \\
y(q, B)(0)=y_{0} \in V, y^{\prime}(q, B)(0)=y_{1} \in H \\
q \in Q_{m}, B \in \mathcal{P}_{a, b}
\end{array}\right.
$$

Note that since there is a unique solution y to (3.1) for given $(q, B) \in$ $Q_{m} \times \mathcal{P}_{a, b}$, we have a well-defined mapping $y=y(q, B)$ of $Q_{m} \times \mathcal{P}_{a, b}$ into $W(0, T)$.

We often call (3.1) the state equation and $y(q, B)$ the state with respect to (3.1). Let us consider a quadratic cost functional attached to (2.3) as

$$
\begin{equation*}
J(q, B)=\frac{1}{2}\left\|C y(q, B)-z_{d}\right\|_{M}^{2},(q, B) \in Q_{m} \times \mathcal{P}_{a, b} \tag{3.2}
\end{equation*}
$$

where M is a Hilbert space of observations, $C \in \mathcal{L}(W(0, T), M)$ is an observer and z_{d} is a desired value belonging to M. Our main aim is to find ($\bar{q}, \bar{B}) \in Q_{m} \times \mathcal{P}_{a, b}$ satisfying

$$
\begin{equation*}
J(\bar{q}, \bar{B})=\min _{(q, B) \in Q_{m} \times \mathcal{P}_{\mathrm{a}, \mathrm{~b}}} J(q, B) \tag{3.3}
\end{equation*}
$$

and to give a characterization of such (\bar{q}, \bar{B}). We call (\bar{q}, \bar{B}) the optimal pairs to the system (3.1) and (3.2). Furthermore, we will give an assumption to $a_{\imath}(t, q ; \phi, \varphi), i=1,2$ and f :
$H(A)_{1} q \rightarrow a_{\imath}(t, q ; \phi, \varphi): Q_{m} \rightarrow R$ is continuous for all $t \in[0, T], \phi, \varphi \in$ V_{2}.
$H(f)_{1} q \rightarrow f(\cdot, q): Q_{m} \rightarrow V_{2}^{*}$ is continuous.
Note that for each $q \in Q_{m}, \phi, \varphi \in V_{\imath}$ the following equalities hold :
$\sup _{\|\varphi\| V_{v_{2}}=1}\left|a_{\imath}(t, q ; \phi, \varphi)\right|=\sup _{\|\varphi\| v_{2}=1}\left|\left\langle A_{\imath}(t, q) \phi,, \varphi\right\rangle_{V_{i}^{*}, V_{2}}\right|=\left\|A_{2}(t, q) \phi\right\| v_{i}^{*}$, whence the assumption $H(A)_{1}$ and the above equality imply that $\left|\left|A_{i}(t, q) \phi\right|\right.$ is continuous on q.

Lemma 3.1. If $H(A), H(f), H(N), H(A)_{1}$ and $H(f)_{1}$ hold. Then $y(q, B) \in C\left(Q_{m} \times \mathcal{P}_{a, b}, W(0, T)\right)$ is strongly continuous on (q, B).

Proof. It can be proved by using the method of Ahemd[2] and $\mathrm{Ha}[8]$.

Theorem 3.1. If $H(A), H(f), H(N), H(A)_{1}$ and $H(f)_{1}$ hold. Then there is at least one optimal pairs (\bar{q}, \bar{B}) if $Q_{m} \times \mathcal{P}_{a, b}$ is compact.

Proof. It is clear from Lemma 3.1 and continuity of norm.

REMARK. We can the operator B to be function of time by taking for the admissible the set

$$
\begin{array}{r}
\mathcal{P}_{a, b}^{0}=\left\{B \in L_{\infty}\left(I, \mathcal{L}\left(V, V_{2}^{*}\right)\right): \text { ess } \sup \left\{| | B(t) \|_{\mathcal{L}\left(V, V_{2}^{*}\right)}, t \in I\right\} \leq b\right. \\
\text { and } \left.\langle B(t) \xi, \xi\rangle_{V_{2}^{*}, V}+a|\xi|_{H}^{2} \geq 0 \text { a.e. on } I\right\}
\end{array}
$$

where $b>0$ and $a \in R$. In this case, replacing $\mathcal{P}_{a, b}^{0}$ instead of $\mathcal{P}_{a, b}$, we obtain the same results.

4. Necessary condition of optimality for both parameters and operators

Here we present the necessary conditions (the minimizing conditions) for optimal pairs $(\bar{q}, \bar{B}) \in Q_{m} \times \mathcal{P}_{a, b}$ to the system (3.1) with the cost functional $J(p, B)$ given by (3.2). If $J(p, B)$ is Gateaux differentiable at (\bar{q}, \bar{B}) in the direction $(q-\bar{q}, B-\bar{B})$, the necessary condition on (\bar{q}, \bar{B}) is characterized by the following inequality

$$
\begin{equation*}
D J(\bar{q}, \bar{B} ; q-\bar{q}, B-\bar{B}) \geq 0, \quad \forall(q, B) \in Q_{m} \times \mathcal{P}_{a, b} \tag{4.1}
\end{equation*}
$$

where $D J(\bar{q}, \bar{B} ; q-\bar{q}, B-\bar{B})$ denotes the Gateaux derivative at (\bar{q}, \vec{B}) in the direction $(q-\bar{q}, B-\bar{B})$.

Note that since $J(q, B)$ composed of the term $y(q, B)$, the Gâteaux differentiability of $J(q, B)$ follows from that of $y(q, B)$. Hence to obtain that of $y(q, B)$ we will need the following condition:
$H(A)_{2} q \rightarrow A_{2}(\cdot, q)$ is Gâteaux differentiable for all t and $D A_{2}(t, q)(p) \equiv$ $D A_{2}(t, q ; p) \in L^{2}\left(0, T ; \mathcal{L}\left(V_{i}, V_{2}^{*}\right)\right)$ for all $q \in Q_{m}$, where $D A_{2}(t, q ; p)$ denotes the Gâteaux derivative at q in the direction of p.
$H(g)_{1}$ For any $\varphi \in H$ the Fréchet derivative of g exists and satisfies $g_{\varphi}(\varphi) \in \mathcal{L}(H, H)$ with $\left\|g_{\varphi}(\varphi)\right\|_{\mathcal{L}(H, H)} \leq c_{4}$, where $g_{\varphi}(\varphi)$ is the Fréchet derivative of g at φ and c_{4} is constant.
$H(f)_{2} q \rightarrow f(t, q)$ is Gâteaux differentiable for all t and $f_{q}(t, q) p \equiv$ $f_{q}(t, q ; p) \in L^{2}\left(0, T, V_{2}^{*}\right)$, where $f_{q}(t, q ; p)$ is Gâteaux derivative at q in the direction of p.

Lemma 4.1. Assume that the conditions in Theorem 2.1, $H(A)_{1}$, $H(A)_{2}, H(f)_{1}, H(f)_{2}$ and $H(g)_{1}$ are satisfied. Then $y(q, B)$ is weakly Gâteaux dufferentiable at (q, B) in the direction $(q-\bar{q}, B-\bar{B})$, and if we denote the Gâteaux derivative of $y(q, B)$ by $z=D y(\bar{q}, \bar{B} ; q-\bar{q}, B-\bar{B})$, it satusfies the following Cauchy problem:

$$
\left\{\begin{align*}
z^{\prime \prime}+ & A_{2}(t, \bar{q}) z^{\prime}+A_{1}(t, \bar{q}) z+N^{*} g_{y}(N y(\bar{q}, \bar{B})) N z+\bar{B} z \tag{4.2}\\
=- & D A_{2}(t, \bar{q} ; q-\bar{q}) y^{\prime}(\bar{q}, \bar{B})-D A_{1}(t, \bar{q} ; q-\bar{q}) y(\bar{q}, \bar{B}) \\
& \quad+(\bar{B}-B) y(\bar{q}, \bar{B})+f_{q}(t, \bar{q} ; q-\bar{q}) \quad \text { in }(0, T) \\
z(0)= & z^{\prime}(0)=0 .
\end{align*}\right.
$$

Proof. We can prove by using the method of Ahemd [2] and Park et al. [12].

By Lemma 4.1, the cost functional $J(q, B)$ is Gâteaux differentiable at (\bar{q}, \bar{B}) in the direction $(q-\bar{q}, B-\bar{B})$, and so, the condition (4.1) is rewritten by

$$
\begin{align*}
& D J(\bar{q}, \bar{B} ; q-\bar{q}, B-\bar{B})=\left\langle C^{*} \Lambda_{M}\left(C y(\bar{q}, \bar{B})-z_{d}\right), z\right\rangle_{W} \cdot(0, T), W(0, T) \tag{4.3}\\
& \quad+\left\langle C^{*} \Lambda_{M}\left(C y(\bar{q}, \bar{B})-z_{d}\right), y_{B}(\bar{q}, \bar{B} ; B-\bar{B})\right\rangle_{W} \cdot(0, T), W(0, T) \geq 0, \\
& \forall(q, u) \in Q_{m} \times \mathcal{P}_{a, b},
\end{align*}
$$

where z is the unique weak solution to (4.2), $C^{*} \in \mathcal{L}\left(M^{*}, W^{*}(0, T)\right)$ is the adjoint operator of C and Λ_{M} is the canonical isomorphism of M onto M^{*} in the sense that
(i) $\left\langle\Lambda_{M} \phi, \phi\right\rangle_{M} \cdot, M=\|\phi\|_{M}^{2}$,
(ii) $\left\|\Lambda_{M} \phi\right\|_{M^{*}}=\|\phi\|_{M}$ for all $\phi \in M$.

In order to avoid the complexity of setting up observation spaces, we consider the following two types of distributive and terminal value observations in time sense. that is, the following cases :
(i) we take $C_{1} \in \mathcal{L}\left(L^{2}\left(0, T ; V_{2}\right), M\right)$ and observer $z(q, B)=C_{1} y(q, B)$;
(ii) we take $C_{2} \in \mathcal{L}(H, M)$ and observer $z(q, B)=C_{2} y(q, B)(T)$.
4.1. The case where $C_{1} \in \mathcal{L}\left(L^{2}\left(0, T ; V_{2}\right), M\right)$

In this case the cost functional is given by

$$
J(q, B)=\frac{1}{2}\left\|C_{1} y(q, B)-z_{d}\right\|_{M}^{2}, \forall q \in Q_{m} \times \mathcal{P}_{a, b}
$$

and then the necessary condition (4.3) is equivalent to

$$
\begin{align*}
& \int_{0}^{T}\left\langle C_{1}^{*} \Lambda_{M}\left(C y(\bar{q}, \bar{B})(t)-z_{d}\right), y_{B}(\bar{q}, \bar{B} ; B-\bar{B})\right\rangle_{V_{2}^{*}, V_{2}} d t \\
&+\int_{0}^{T}\left\langle C_{1}^{*} \Lambda_{M}\left(C_{1} y(\ddot{q}, \bar{B})(t)-z_{d}\right), z(t)\right\rangle_{V_{2}^{*}, V_{2}} d t \geq 0 \tag{4.4}\\
& \forall(q, B) \in Q_{m} \times \mathcal{P}_{a, b}
\end{align*}
$$

Let us introduce an adjoint state $\eta(\bar{q}, \bar{B})$ satisfying

$$
\begin{align*}
\eta^{\prime \prime}(\bar{q}, \bar{B}) & -A_{2}(t, \bar{q}) \eta^{\prime}(\bar{q}, \bar{B})+\left[\left(A_{1}(t, \bar{q})-A_{2}^{\prime}(t, \bar{q})\right)\right. \\
& +\left(N^{*} g_{y}(N y(\bar{q}, \bar{B}) N)^{*}+\bar{B}^{*}\right] \eta(\bar{q}, \tilde{B}) \\
& =C_{1}^{*} \Lambda_{M}\left(C_{1} y(\bar{q}, \bar{B})-z_{d}\right), \tag{4.5}\\
\eta(\bar{q}, \bar{B})(T) & =0, \eta^{\prime}(\bar{q}, \bar{B})(T)=0 .
\end{align*}
$$

Since $C_{1}^{*} \Lambda_{M}\left(C_{1} y(\bar{q}, \bar{B})-z_{d}\right) \in L^{2}\left(0, T ; V_{2}^{*}\right)$ and $A_{2}^{\prime}(t, \bar{q}) \in L^{\infty}(0, T$; $\left.\mathcal{L}\left(V_{2}, V_{2}^{*}\right)\right)$, the equation (4.5) is well-posed and permits a unique weak
solution $\eta(\bar{q}, \bar{B}) \in W(0, T)$ if we consider the change of the time variable as $t \rightarrow T-t$. Multiplying (4.5) by z, which is the weak solution to (4.2), integrating it by parts after integrating it on $[0, T]$, we obtain

$$
\begin{aligned}
& \int_{0}^{T}\left\langle\eta(\bar{q}, \bar{B})(t), z^{\prime \prime}(t)+A_{2}(t, \bar{q}) z^{\prime}(t)+\left[A_{1}(t, \bar{q})\right.\right. \\
& \left.\left.\quad \quad+N^{*} g_{y}(N y(\bar{q}, \bar{B})(t)) N+\bar{B}\right] z(t)\right\rangle_{V^{*}, V} d t \\
& =\int_{0}^{T}\left\langle\eta(\bar{q}, \bar{B})(t),-D A_{2}(t, \bar{q} ; q-\bar{q}) y^{\prime}(\bar{q}, \bar{B})(t)\right. \\
& \left.\quad-D A_{1}(t, \bar{q} ; q-\bar{q}) y(\bar{q}, \bar{B})(t)\right\rangle_{V^{*}, V} d t \\
& \quad+\int_{0}^{T}\langle\eta(\bar{q}, \bar{B})(t),(\mathcal{B}-B) y(\bar{q}, \bar{B})(t) \\
& \left.\quad \quad+f_{q}(t, \bar{q} ; q-\bar{q})\right\rangle_{V^{*}, V} d t \geq 0, \forall(q, B) \in Q_{m} \times \mathcal{P}_{a, b} .
\end{aligned}
$$

From (4.3) and (4.4), we obtain the inequality

$$
\begin{aligned}
& \int_{0}^{T}\left\langle\eta(\bar{q}, \bar{B})(t), z^{\prime \prime}(t)+A_{2}(t, \bar{q}) z^{\prime}(t)+\left[A_{1}(t, \bar{q})\right.\right. \\
& \left.\left.\quad \quad+N^{*} g_{y}(N y(\bar{q}, \bar{B})(t)) N+\bar{B}\right] z(t)\right\rangle_{V} \cdot, V d t \\
& +\int_{0}^{T}\left\langle C_{1} y_{B}(\bar{q}, \bar{B} ; q-\bar{q})(t), C_{1} y(\bar{q}, \bar{B})(t)-z_{d}\right\rangle d t \\
& =\int_{0}^{T}\left\langle\eta(\bar{q}, \bar{B})(t),-D A_{2}(t, \bar{q} ; q-\bar{q}) y^{\prime}(\bar{q}, \bar{B})(t)\right. \\
& \left.\quad-D A_{1}(t, \bar{q} ; q-\bar{q}) y(\bar{q}, \bar{B})(t)\right\rangle_{V^{*}, V} d t \\
& +\int_{0}^{T}\left\langle\eta(\bar{q}, \bar{B})(t),(\bar{B}-B) y(\bar{q}, \bar{B})(t)+f_{q}(t, \bar{q} ; q-\bar{q})\right\rangle_{V}^{*}, V \\
& +\int_{0}^{T}\left\langle C_{1} y_{B}(\bar{q}, \bar{B} ; q-\bar{q})(t), C_{1} y(\bar{q}, \bar{B})(t)-z_{d}\right\rangle V_{\bullet, V} d t \geq 0, \\
& \quad \forall(q, u) \in Q_{m} \times \mathcal{P}_{a, b} .
\end{aligned}
$$

Here we used the inequality (4.4). Summarizing these we have the following theorem.

Theorem 4.1. Assume that $H(A), H(f), H(N), H(g), H(A)_{1}, H(A)_{2}$, $H(f)_{1}, H(f)_{2}, H(g)_{1}$ hold. Then the optimal pairs (\bar{q}, \bar{B}) is characterized by state and adjoint systems and inequality:

$$
\begin{gathered}
\left\{\begin{array}{c}
y^{\prime \prime}(\bar{q}, \bar{B})+A_{2}(t, \bar{q}) y^{\prime}(\bar{q}, \bar{B})+A_{1}(t, \bar{q}) y(\bar{q}, \bar{B})+N^{*} g(N y(\bar{q}, \bar{B})) \\
+B y(\bar{q}, \bar{B})=+f(t, \bar{q}) \quad \text { in }(0, T) \\
y(\bar{q}, \bar{B})(0)=y_{0} \in V, y^{\prime}(\bar{q}, \bar{B})(0)=y_{1} \in H,
\end{array}\right. \\
\left\{\begin{array}{c}
\eta^{\prime \prime}(\bar{q}, \bar{B})-A_{2}(t, \bar{q}) \eta^{\prime}(\bar{q}, \bar{B})+\left[\left(A_{1}(t, \bar{q})-A_{2}^{\prime}(t, \bar{q})\right)\right. \\
+\left(N^{*} g_{y}(N y(\bar{q}, \bar{B}))^{*}+\bar{B}^{*}\right] \eta(\bar{q}, \bar{B}) \\
=C_{1}^{*} A_{M}\left(C_{1} y(\bar{q}, \bar{B})-z_{d}\right) \text { in }(0, T), \\
\eta(T, \bar{q})=0, \eta^{\prime}(T, \bar{q})=0,
\end{array}\right. \\
\left\{\begin{array}{c}
\int_{0}^{T}\left\langle\eta(\bar{q}, \tilde{B})(t),(\tilde{B}-B) y(\bar{q}, \bar{B})(t)+f_{q}(t, \tilde{q} ; q-\bar{q})\right\rangle_{V^{*}, V} d t \\
+\int_{0}^{T}\left\langle C_{1} y_{B}(\bar{q}, \bar{B} ; B-\bar{B})(t), C_{1} y(\bar{q}, \bar{B})(t)-z_{d}\right\rangle_{V^{*}, V} d t \\
\geq \int_{0}^{T}\left\langle\eta(\bar{q}, \tilde{B})(t), D A_{2}(t, \bar{q} ; q-\bar{q}) y^{\prime}(\bar{q}, \bar{B})(t)\right. \\
\left.+D A_{1}(t, \ddot{q} ; q-\bar{q}) y(\bar{q}, \bar{B})(t)\right\rangle_{V}, v d t, \forall(q, u) \in Q_{m} \times \mathcal{P}_{a, b} .
\end{array}\right.
\end{gathered}
$$

4.2. The case where $C_{2} \in \mathcal{L}(H, M)$

In this case the cost functional is given by

$$
J(q, B)=\frac{1}{2}\left\|C_{2} y(q, B)(T)-z_{d}\right\|_{M}^{2}, \forall(q, B) \in Q_{m} \times \mathcal{P}_{a, b}
$$

the necessary condition (4.3) is equivalent to

$$
\begin{align*}
& \left(C_{2}^{*} \Lambda_{M}\left(C_{2} y(q, B)(T)-z_{d}\right), z(T)\right)_{H} \\
& \quad+\left(C_{2}^{*} \Lambda_{M}\left(C_{2} y(q, B)(T)-z_{d}\right), y_{B}(\bar{q}, \bar{B} ; B-\bar{B})(T)\right)_{H} \geq 0 \tag{4.7}\\
& \quad \forall(q, B) \in Q_{m} \times \mathcal{P}_{a, b} .
\end{align*}
$$

Let us introduce an adjoint state $\eta(\bar{q}, \bar{B})$ satisfying

$$
\left\{\begin{array}{l}
\eta^{\prime \prime}(\bar{q}, \bar{B})-A_{2}(t, \bar{q}) \eta^{\prime}(\bar{q}, \bar{B})+\left[\left(A_{1}(t, \bar{q})-A_{2}^{\prime}(t, \bar{q})\right)\right. \tag{4.8}\\
\quad+\left(N^{*} g_{y}(N y(\bar{q}, \bar{u}) N)^{*}+\bar{B}^{*}\right] \eta(\bar{q}, \bar{B})=0 \\
\eta(\bar{q}, \bar{B})(T)=0 \\
\eta^{\prime}(\bar{q}, \bar{B})(T)=-C_{2}^{*} \Lambda_{M}\left(C_{2} y(\bar{q}, \bar{B})(T)-z_{d}\right)
\end{array}\right.
$$

It follows by the same reason as the case 4.1 that there is a unique weak solution $\eta(\bar{q}, \bar{B}) \in W(0, T)$, because $C_{2}^{*} \Lambda_{M}\left(C_{2} y(\bar{q}, \bar{B})(T)-z_{d}\right) \in H$.

Theorem 4.2. We assume that $H(A), H(f), H(N), H(g), H(A)_{1}$, $H(A)_{2}, H(f)_{1}, H(f)_{2}$ and $H(g)_{1}$ hold. Then the optimal pairs (\bar{q}, \bar{B}) is characterized by state and adjoint systems and inequality:

$$
\begin{gathered}
\left\{\begin{array}{l}
y^{\prime \prime}(\bar{q}, \bar{B})+A_{2}(t, \bar{q}) y^{\prime}(\bar{q}, \bar{B})+A_{1}(t, \bar{q}) y(\bar{q}, \bar{B})+N^{*} g(N y(\bar{q}, \bar{B})) \\
\quad+B y(\bar{q}, \bar{B})=f(t, q) \quad \text { in }(0, T), \\
y(\bar{q}, \bar{B})=y_{0} \in V, y^{\prime}(\bar{q}, \bar{B})=y_{1} \in H,
\end{array}\right. \\
\left\{\begin{array}{c}
\eta^{\prime \prime}(\bar{q}, \bar{B})-A_{2}(t, \bar{q}) \eta^{\prime}(\bar{q}, \bar{B})+\left[\left(A_{1}(t, \bar{q})-A_{2}^{\prime}(t, \bar{q})\right)\right. \\
\quad+\left(N^{*} g_{y}(N y(\bar{q}, \bar{B}) N)^{*}+\bar{B}^{*}\right] \eta(\bar{q}, \bar{B})(T)=0, \\
\eta(\bar{q}, \bar{B})(T)=0, \\
\eta^{\prime}(\bar{q}, \bar{B})(T)=-C_{2}^{*} \Lambda_{M}\left(C_{2} y(\bar{q}, \bar{B})(T)-z_{d}\right),
\end{array}\right. \\
\left\{\begin{array}{l}
\left(C_{2}^{*}\left(C_{2} y(\bar{q}, \bar{B})(T)-z_{d}\right)_{H}\right. \\
\quad+\int_{0}^{T}\left\langle(\bar{B}-B) y(\bar{q}, \bar{B})(t)+f_{q}(t, \bar{q} ; q-\bar{q}), \eta(\bar{q}, \bar{B})(t)\right\rangle_{V^{*}, V} d t \\
\geq \int_{0}^{T}\left\langle D A_{2}(t, \bar{q} ; q-\bar{q}) y^{\prime}(\bar{q}, \tilde{B})(t)\right. \\
\left.+D A_{1}(t, \tilde{q} ; q-\bar{q}) y(\bar{q}, \bar{B})(t), \eta(\bar{q}, \bar{B})(t)\right\rangle_{V^{*}, V} d t, \forall(q, B) \in Q_{m} \times \mathcal{P}_{a, b} .
\end{array}\right.
\end{gathered}
$$

Proof. We prove the inequality condition of optimal control only. Multiplying (4.8) by z, which is a weak solution to (4.2), integrating it by parts after integrating it on $[0, t]$, we obtain

$$
\begin{aligned}
& \begin{array}{l}
\left(z(T), \eta^{\prime}(\bar{q}, \bar{B})(T)\right)_{H}+ \\
\quad \int_{0}^{T}\left\langle\eta(\bar{q}, \bar{B})(t), z^{\prime \prime}(t)+A_{2}(t, \bar{q}) z^{\prime}(t)+\left[\left(A_{1}(t, \bar{q})\right.\right.\right. \\
\\
\left.\quad+N^{*} g_{y}(N y(\bar{q}, B)(t) N+\bar{B}] z(t)\right\rangle_{V^{*}, V} d t \\
=\int_{0}^{T}\left\langle\eta(\bar{q}, \bar{B})(t),-D A_{2}(t, \bar{q} ; q-\bar{q}) y^{\prime}(\bar{q}, \bar{B})(t)\right. \\
\left.\quad-D A_{1}(t, \bar{q}, q-\bar{q}) y(\bar{q}, \bar{B})(t)\right\rangle_{V^{*}, V} d t \\
+ \\
\quad \int_{0}^{T}\left\langle\eta(\bar{q}, \bar{B})(t),(\bar{B}-B) y(\bar{q}, \bar{B})(t)+f_{q}(t, \bar{q} ; q-\bar{q})\right\rangle_{V^{*}, V} d t \\
+ \\
\quad\left(z(T),-C_{2}^{*} \Lambda_{M}\left(C_{2} y(\bar{q}, \bar{B})(T)-z_{d}\right)\right)_{H}=0 \\
\forall(q, B) \in Q_{m} \times \mathcal{P}_{a, b}
\end{array}
\end{aligned}
$$

Hence from (4.7) and (4.8) we conclude that

$$
\begin{aligned}
& \left(z(T), C_{2}^{*} \Lambda_{M}\left(C_{2} y(\bar{q}, \bar{B})(T)-z_{d}\right)\right)_{H} \\
& \quad+\left(y_{B}(\bar{q}, \bar{B} ; u-\bar{B})(T), C_{2}^{*} \Lambda_{M}\left(C_{2} y(\bar{q}, \bar{B})(T)-z_{d}\right)_{H}\right. \\
& =\int_{0}^{T}\left\langle\eta(\bar{q}, \bar{B})(t),-D A_{2}(t, \bar{q} ; q-\bar{q}) y^{\prime}(\bar{q}, \bar{B})(t)\right. \\
& \left.\quad-D A_{1}(t, \bar{q} ; q-\bar{q}) y(\bar{q}, \bar{B})(t)\right\rangle_{V \cdot, V} d t \\
& +\int_{0}^{T}\left\langle\eta(\bar{q}, \bar{B})(t),(\bar{B}-B) y(\bar{q}, \bar{B})(t)+f_{q}(t, \bar{q} ; q-\bar{q})\right\rangle_{V^{*}, V} d t \\
& +\left(y_{B}(\bar{q}, \bar{B} ; B-\bar{B})(T), C_{2}^{*} \Lambda_{M}\left(C_{2} y(\bar{q}, \bar{B})(T)-z_{d}\right)_{H} \geq 0\right. \\
& \quad \forall(q, B) \in Q_{m} \times \mathcal{P}_{a, b}
\end{aligned}
$$

References

[1] N. U. Ahemd, Necessary conditions of optrmality for a class of second order hyperbolvc systems with spatzally dependent controls in the coefficzents, J. Optim. Theory and Appl. 38 (1982), 423-446.
[2] N. U. Ahemd, Optimizatzon and zdentafication of systems governed by evolutron equations on Banach space, Pitman research notes in Mathematics series, Longman Scientific \& Technical 184, 1988.
[3] H. T. Banks, D. S. Gilliam and V.]. Shubov, Grobal solvabuluty for damped abstract nonlvnear hyperbolvc systems, Differential and integral equations 10(2) (1997), 307-332.
[4] H. T. Banks, K. lto and Y. Wang, Well posedness for damped second order systems wnth unbounded input operators, Center for research in scientific computation, North Carolina state univ., 1993.
[5] H. T. Banks and K. Kunisch, Estımations Technıques for distributed parameter systems, Bırkhàuser, 1989.
[6] R. Dautray and J. L. Lions, Mathematzcal Analyszs and Numerical Methods for science and Technology, Springer-Verlag, 5, Evolution Problems, 1992.
[7] J. H. Ha and S. I. Nakagiri, Existence and Regularity of weak solutions for semultnear second order evolutzon equatzons, Funkcialaj Ekvacioj 41 (1998), 1-24.
[8] J. H. Ha, Optzmal control problems for hyperbolvc distrubuted parameter systems exth damping terms, Doctoral Thesus, Kobe Univ., Japan, 1996.
[9] J. L. Lions, Optzmal control of systems governed by partial Differentzal Equations, Springer-Verlag, New York, 1971.
[10] O. A. Ladyzhenskaya, The boundary value problems of Mathematzcal physıcs, Springer-Verlag, New York, 1984.
[11] A. Papageorigiou and N. S. Papageoriou, Necessary and sufficzent conditzons for optzmalaty in nonlunear distributed parameter systems with varzable initzal state, J. Math. Soc. Japan 42(3) (1990), 387-396.
[12] J. Y. Park, J. H. Ha and H. K. Han, Identification problem for damping parameters in linear damped second order systems, J. Korea Math. Soc. 34(4) (1997), 1-14.
[13] J. Y. Park, Y. H. Kang and 1. H. Jung, Optimizatzon and 2dentrficatzon of nonlinear systems on Banach space, to appear in Indian J. pure Appl. Math..
[14] J. Y. Park, Y. H. Kang and M. J. Lee, Optima control problem for the nonlanear hyperbohc systems, International Symposium on Nonlinear Analysis and Convex Analysis, Kyoto Universty, Japan (2000).
[15] R. Temam, Infinıte-Dimensıonal Dynamical systems in Mechanics and Physıcs, Springer-Verlag, New York, 1988.

Department of Mathematics
Pusan National University
Pusan 607-735, Korea
E-mail: yghkang@hyowon.pusan.ac.kr

[^0]: Received May 18, 2000. Revised October 5, 2000.
 2000 Mathematics Subject Classification: 93C20, 49J20, 49 K 20.
 Key words and phrases: Optımization and identification, nonlinear hyperbolic systems, quadratic cost function.

