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Bayes and Empirical Bayes Estimation of the Scale
Parameter of the Gamma Distribution under
Balanced Loss Functions

R. Rezaeian? and A. Asgharzadeh?

Abstract

The present paper investigates estimation of a scale parameter of a
gamma distribution using a loss function that reflects both goodness of fit
and precision of estimation. The Bayes and empirical Bayes estimators rel-
ative to balanced loss functions (BLFs) are derived and optimality of some
estimators are studied.
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1. Introduction

The gamma distribution is widely used and plays an important role in the
reliability field and the survival analysis, therefore estimating of its parameters

will be important.
Let X1,...,X,, be a random sample of size n from the gamma distribution

I'(4, #) with density

_ 1 s e
f(mie)_—_O‘sF(&)m ed, x>0,6>0 6>0, (1.1)

where ¢ is known and € is an unknown scale parameter. we consider estimation
of the scale parameter of § under the BLF, given by

n . D 2 "
L(8,0) = % > (X7 - e) + (1 —w)(@ - 6)?, (1.2)
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where 0 < w < 1, and 8 is an estimator of 8 .

The BLF, introduced by Zellner (1994), is formulated to reflect two criteria,
namely goodness of fit and precision of estimation. A goodness of fit criterion
such as the sum of squared residuals in regression problems leads to an estimate
which gives good fit and unbiased estimator; however, as commented by Zellner
(1994), it may not be as precise as an estimator which is biased. Thus there is
a need to provide a framework which combines goodness of fit and precision of
estimation formally. The BLF framework meets this need. The first term on the
r.h.s. of (1.2) reflects goodness of fit while the second term reflects precision of
estimation. Note that if w — 0, the loss function reduces to a squared error loss
while if w — 1, the loss function reduces to a pure goodness of fit criterion.

The BLF was first introduced in Zellner (1994) for the estimation of a scalar
mean, a vector mean and a regression coefficient vector. Rodrigues and Zellner
(1995) considered the estimation problem for the exponential mean time to failure
under a weighted balanced loss function (WBLF). Various other authors have
used this form of loss function in a number of recent studies including Chung et
al. (1998), Dey et al. (1999), Sanjari Farsipour and Asgharzadeh (2003, 2004)
and Gruber (2004).

Due to convexity of the loss, one needs to consider only estimators that are
functions of the minimal sufficient statistics X. Now, for any estimator g(X) of

0,
%; (%) = ;15‘2‘;()( 37+ (5 ~g<7>)2-

Thus, without loss of generality, one can consider the BLF as
~ X A2 ~
L(0,6) =w (—(—5— - 9) + (1 - w)(8 - 0)?, (1.3)

where 8 is a function of X.

An extension of the BLF (1.3) is the WBLF, which is defined as

~ X 2 ~
Ly @,0) = wa(6) (5 ~6) +(=w)a@)F-0) (1.4)

where g() > 0 is any positive function of § which is called the weight function.
It generalizes the BLF in the sense that ¢(8) = 1.

In this paper, the Bayes and empirical Bayes estimators of § are considered
under the BLF (1.3) and WBLF (1.4). Optimality of some estimators are studied.
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2. Estimation under BLF

Let Xi,...,X, be a random sample from the gamma distribution with pdf
given by (1.1). In this section, we consider some optimal estimators of the scale
parameter 6 under the BLF (1.3) . The usual estimator of § is X /§, which is the
maximum likelihood estimator (MLE) of 6.

2.1. Minimum Risk Estimator

The minimum mean squared error estimator of # can be shown as the form

no _7_
1+né) ¢
which is in the class of a(X/§). With respect to the BLF (1.3), we propose a

minimum risk estimator as Y = a(X /) and find the value of a for which risk
under BLF is minimum. The BLF of a(X/¢) is

() G- v 5.

which has the risk function

R(oZ0)—ur (2= F) v amup(F )’

It can be seen that

R az 6)= (a—1)202+£2-[(a—w)2+ (1-w)]
5 = 5 w w)].
The value of a for which this risk function is minimum is

_w+n5
T 1+mnd’

ag

Thus, the minimum risk estimator (MRE) is

w-l—néz
14né &

b\MRE = (2.1)
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2.2. Bayes Estimator

For Bayesian estimation, we assume that the conjugate IG(«, ) (an inverted
gamma) prior for # with parameters a and 3, and density

w(6) = I‘(a)( )a+1 —B/f 9>, (2.2)

where a > 0 and # > 0 are known. It is easy to verify that the posterior density
of 8, for a given x = (z1,...,%,) is

n né+a
[Pr2)
=1

") = s T )

1\™Mtetl _gypn o
(5) e 0 y >0

which is the inverted gamma with parameters né + « and 8+ Y . ; z;. The
posterior mean of § can be shown that to be

ﬂ+ZX

BOR) = 5T

This posterior mean can be written as

E@|X) = (1 - B)? M

where
a—1 B
T mWita-1 and =T
Under the BLF (1.3), the Bayes estimator of 6, denoted by 53, is the value 8
which minimizes the posterior risk

2
E[L(5,0)|X] = w (%ﬁ - 5) + (1 — w)E[(6 — 6)%|X).

Here E(.) denotes posterior expectation with respect to the posterior distribution
m(0|x). Solving the equation

[L(9 NIX1 _,
00 ’

we obtain the Bayes estimator as

O = w-‘?— + (1 - w)E(0]X).
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Accordingly, the Bayes estimator 53 of @ is obtained as
~ X X
6 = W +(1-w)l- B)? + By]
X
= (1 - u)_é— + up, (23)

where u = (1 — w)B.

Taking @ = (1 — u) and b = up in (2.3), we can obtain the admissibility
result for a class of linear estimators of the form a(X/8) + b. It is observed that
a = (1 —u) is strictly between w and (nd —w)/(nd —1) and the constant b = up is
strictly bigger than 0. Since the BLF (1.3) is strictly convex, (2.3) is the unique
Bayes estimator and hence admissible. This proves that a(X/§) + b is admissible
when w < a < (nd —w)/(nd — 1) and b > 0. According to this, the estimators

é\ _w+n5¥
MRE= 117068

(MRE) and X/§ (MLE) are admissible.

2.3. Empirical Bayes Estimator

The Bayes estimator in (2.3), i.e.,

nd+a-—1wX (1-w)p
nf+a—-1 6 né+a-1
is seen to depend on o and 3. When the prior parameters « and 8 are unknown,

~ X
93=(1—u)F+uu=

we may use the empirical Bayes approach to get their estimates by using past
samples. For more details on the empirical Bayes approach, see for example
Martiz and Lwin (1989) . When the current (informative) sample is observed,
suppose that there are available m past similar samples X1, Xj2,...,Xjn, 7=
1,2,...,m with past realizations 61,6, ...,68,, of the random variable 8. Each
sample is assumed to be a sample of size n obtained from the gamma distribution
with density given by (1.1). The likelihood function of the j** sample is given by

n 1 n
—na—nd 1 T i1 T
L(B;lz) = [D(6)] 05 [ alste & =52,
i=1
For a sample j,j = 1,2, ..., m, the maximum likelihood estimate of the parameter

6; is
n
§ :xj,i
i=1

nd

o~

ej—2j=
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The conditional pdf of Z; = (3_1-; Xj:)/nd, for a given 0; is

no)y® o _my
f(z5105) = @;E%Z?a le 7%, 2z >0. (2.4)
J

By using (2.2) and (2.4), the marginal pdfof Z;,j = 1,2,...,m, can be shown to
be
fre) = [ 110)m(0)0,
I Rl ) i sprcc N L S g
- /0 s 2 ¢ T@ere

G i
~ B(nd,a) (B + nbz;)nte’

zj > 0, (2.5)

where B(.,.) is the complete beta function. Now, since

2 n
B2 = '&’?'I and B(Z)) = né(i ’ f)-é_al)— 2)’

the moment estimates of the parameters a and 8 can be shown that to be

2nd8; — (n5 + 1)5% néS152
néSy — (né +1)83 néSy — (né + 1)S¢’

a= B= (2.6)

where o o
1 1S,
Sl:ﬁ;zj and S2:E;zj'

Applying these estimates in (2.3), the empirical estimator of the parameter 6
under the BLF (1.3) is given by

~ i+ (@-1wX  (1-wp
Oep=—51%-1 3 Twra-1 (2.7)
3. Estimation under WBLF

In this section, we consider the Bayes estimator of § under the WBLF (1.4).
As before, it can be shown that the Bayes estimator of 6 is

5WB = wé\l + (1 — w)gz,

where 81 = X /5 and 02 = E[0g(0)|X]/E|[q(8)|X].
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To obtain the Bayes estimator §W B, we now consider two examples according
to noninformative prior and conjugate prior. We also consider several weight
functions, ¢(#) of the WBLF (1.4) for each prior.

Example 3.1 (Noninformative Prior).
The noninformative prior for 8 is given by m(8) o< §~1. Thus, the posterior
distribution 7 (8|x) is IG(nd, Y -, &i).

Case 1. ¢q(6) =6:
We obtain
n n
> X - > X
~ =1 ~ . X =l
92_716——2’ 9WB_w6+(1 w)n6—2
Case 2. q(f) = 6%
> X - DX
~ = > X =l
b2 = 53 bwp =wy +(1-w) 5
Case 3. ¢(0) = 62
n n
> X - DX
~ o1 ~ X =1
= = - 1 -
2 nd+1’ bws u)5+( w)n(5+1

Example 3.2 (Conjugate Priors).
Assume that the prior of § is IG(«, 8). Then the posterior distribution is
n(0|x) is IG(né + o, B+ > 1y xs) -

Case 1. ¢(0) =6:
‘We obtain
mn n
B+ X % B+ X
o~ _ i=1 -~ — kel = =1
6’2_n<5+cv—2’ Ows “s +a w)n6+a—2'
Case 2. q(0)=02:
n n
B+ X - B+ X;
5 == B, = w— 1-— =1
2T Wi+a-3 Ows v +( w)n5+a~3
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Case 3. q(0) =072

n n
,8+ZX,' . ,@+ZX,

=~ i=1 ~ X i1
92_n6+a+1’ 0WB_w6+(1 cd)n<H-a+1'

It should be mentioned here that when the prior parameters a and 3 are un-

known, we may use the empirical Bayes approach to estimate them. Substitution
of @ and S, given by (2.4), in Oy B yields the empirical Bayes estimator of § under
the WBLF (1.4).

4. Numerical Computations

In this section, we present a numerical example and a Monte Carlo simulation

study to illustrate the methods of inference developed in Section 2.

4.1. Illustrative Example

The MRE, Bayes and empirical Bayes estimates of the parameter 6 are com-

pared according to the following steps:

1. For given values of prior parameters (o = 2, § = 1) , we generate § = 1.024

from the inverted gamma prior (2.2). The S-PLUS package is used in the
generation of the inverted gamma random variates.

. Based on the generated value @ = 1.024, a random sample of size n = 10 is

then generated from the gamma distribution I'(d = 1, 6 = 1.024) defined
by (1.1). This sample is

4.687 0.719 0.055 2.576 1.268 1.399 0.578 0.785 0.169
1.429

. Using these data, the MRE and Bayes estimates of 6 are computed from

(2.1) and (2.3) with w = 0.5 and given, respectively by gMRE = 1.303 and
fp = 1.348.

. For given values of «, # and n, we generate a random sample (past data)

Zin,J =1,2,...,m of size m = 15 from the marginal density of Z; ., given
by (2.5), as
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0.277 0.294 0.617 0.549 1.270 0.211 0.342 0.103 1.651 5.653
0.216 0.125 0.772 0.1569 0.581.

The moment estimates & = 2.458 and E = 1.246 are then computed by
using (2.6).

5. By using the estimates of & = 2.458 and § = 1.246 in (2.7) with w = 0.5,
the empirical Bayes estimate of 8 is g = 1.073.

4.2. Simulation Results

The estimates obtained in Section 2 are compared based on Monte Carlo
simulation as follows:

1. For given values of prior parameters a and 3, we generate 8 from the prior -
density (2.2) and then samples of different sizes n are generated from the
gamma distribution I'(§, 0) with § = 1.

2. The MRE estimate of 6 is computed from (2.1).
3. For given value of w, the Bayes estimate of 8 is computed from (2.3).

4. The empirical Bayes estimate 8 is computed from (2.7).

Table 4.1: Estimated risk (ER) of the parameter 8 for different values of n, m, w
and 5,000 repetitions (a =2, 8=1, § =1).

ER(0gB)
m=15| m =20
04 0.1371 0.1363 | 0.1343 | 0.1315
20 | 0.6 0.2053 0.2052 | 0.1765 | 0.1686
0.8 0.1639 0.1638 | 0.1685 | 0.1674
04 0.0984 0.0980 | 0.0967 | 0.0961
30| 0.6 0.1027 0.1024 | 0.1031 | 0.1028
0.8 0.0740 0.0739 | 0.0738 | 0.0736
04 0.0541 0.0539 | 0.0547 | 0.0543
40 | 0.6 0.0728 0.0727 | 0.0770 | 0.0766
0.8 0.0577 0.0577 | 0.0571 | 0.0569

n | w | ER(Ougre) | ER(0B)
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5. The square deviations (6* — 8)? are compared for different sizes n where 6*
stands an estimate (MRE, Bayes, or empirical Bayes) of the parameter 6.

6. The above steps are repeated 5,000 times and the estimated risk (ER) is
computed by averaging the the squared deviations over the 5,000 repeti-
tions. The computational results are displayed in Table 4.1.

It is observed from Table 4.1, the empirical Bayes estimates are almost as
efficient as the Bayes estimates for all sample sizes considered. Furthermore, the
estimated risks of three methods of estimation are decreasing when n and m are
increasing. Different values of the prior parameters o and  rather those listed
in Table 4.1 have been considered but did not change the previous conclusion.
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