• 제목/요약/키워드: optimal approximation

검색결과 476건 처리시간 0.025초

신경망을 이용한 열간단조품의 초기 소재 설계 (Design of Initial Billet using the Artificial Neural Network for a Hot Forged Product)

  • Kim, D.J.;Kim, B.M.;Park, J.C.
    • 한국정밀공학회지
    • /
    • 제12권11호
    • /
    • pp.118-124
    • /
    • 1995
  • In the paper, we have proposed a new technique to determine the initial billet for the forged products using a function approximation in neural network. A three-layer neural network is used and a back propagation algorithm is employed to train the network. An optimal billet which satisfied the forming limitation, minimum of incomplete filling in the die cavity, load and energy as well as more uniform distribution of effective strain, is determined by applying the ability of function approximation of the neural network. The amount of incomplete filling in the die, load and forming energy as well as effective strain are measured by the rigid-plastic finite element method. This new technique is applied to find the optimal billet size for the axisymmetric rib-web product in hot forging. This would reduce the number of finite element simulation for determining the optimal billet of forging products, further it is usefully adopted to physical modeling for the forging design

  • PDF

Fast Mixed-Integer AC Optimal Power Flow Based on the Outer Approximation Method

  • Lee, Sungwoo;Kim, Hyoungtae;Kim, Wook
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2187-2195
    • /
    • 2017
  • In order to solve the AC optimal power flow (OPF) problem considering the generators' on/off status, it is necessary to model the problem as mixed-integer nonlinear programming (MINLP). Because the computation time to find the optimal solution to the mixed-integer AC OPF problem increases significantly as the system becomes larger, most of the existing solutions simplify the problem either by deciding the on/off status of generators using a separate unit commitment algorithm or by ignoring the minimum output of the generators. Even though this kind of simplification may make the overall computation time tractable, the results can be significantly erroneous. This paper proposes a novel algorithm for the mixed-integer AC OPF problem, which can provide a near-optimal solution quickly and efficiently. The proposed method is based on a combination of the outer approximation method and the relaxed AC OPF theory. The method is applied to a real-scale power system that has 457 generators and 2132 buses, and the result is compared to the branch-and-bound (B&B) method and the genetic algorithm. The results of the proposed method are almost identical to those of the compared methods, but computation time is significantly shorter.

최적화에서의 근사모델 관리기법의 활용 (A Framework for Managing Approximation Models in place of Expensive Simulations in Optimization)

  • 양영순;장범선;연윤석
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.159-167
    • /
    • 2000
  • In optimization problems, computationally intensive or expensive simulations hinder the use of standard optimization techniques because the computational expense is too heavy to implement them at each iteration of the optimization algorithm. Therefore, those expensive simulations are often replaced with approximation models which can be evaluated nearly free. However, because of the limited accuracy of the approximation models, it is practically impossible to find an exact optimal point of the original problem. Significant efforts have been made to overcome this problem. The approximation models are sequentially updated during the iterative optimization process such that interesting design points are included. The interesting points have a strong influence on making the approximation model capture an overall trend of the original function or improving the accuracy of the approximation in the vicinity of a minimizer. They are successively determined at each iteration by utilizing the predictive ability of the approximation model. This paper will focuses on those approaches and introduces various approximation methods.

  • PDF

Polynomially Adjusted Normal Approximation to the Null Distribution of Ansari-Bradley Statistic

  • Ha, Hyung-Tae;Yang, Wan-Youn
    • 응용통계연구
    • /
    • 제24권6호
    • /
    • pp.1161-1168
    • /
    • 2011
  • The approximation for the distribution functions of nonparametric test statistics is a significant step in statistical inference. A rank sum test for dispersions proposed by Ansari and Bradley (1960), which is widely used to distinguish the variation between two populations, has been considered as one of the most popular nonparametric statistics. In this paper, the statistical tables for the distribution of the nonparametric Ansari-Bradley statistic is produced by use of polynomially adjusted normal approximation as a semi parametric density approximation technique. Polynomial adjustment can significantly improve approximation precision from normal approximation. The normal-polynomial density approximation for Ansari-Bradley statistic under finite sample sizes is utilized to provide the statistical table for various combination of its sample sizes. In order to find the optimal degree of polynomial adjustment of the proposed technique, the sum of squared probability mass function(PMF) difference between the exact distribution and its approximant is measured. It was observed that the approximation utilizing only two more moments of Ansari-Bradley statistic (in addition to the first two moments for normal approximation provide) more accurate approximations for various combinations of parameters. For instance, four degree polynomially adjusted normal approximant is about 117 times more accurate than normal approximation with respect to the sum of the squared PMF difference.

확장된 근사 알고리즘을 이용한 조합 방법 (Rule of Combination Using Expanded Approximation Algorithm)

  • 문원식
    • 디지털산업정보학회논문지
    • /
    • 제9권3호
    • /
    • pp.21-30
    • /
    • 2013
  • Powell-Miller theory is a good method to express or treat incorrect information. But it has limitation that requires too much time to apply to actual situation because computational complexity increases in exponential and functional way. Accordingly, there have been several attempts to reduce computational complexity but side effect followed - certainty factor fell. This study suggested expanded Approximation Algorithm. Expanded Approximation Algorithm is a method to consider both smallest supersets and largest subsets to expand basic space into a space including inverse set and to reduce Approximation error. By using expanded Approximation Algorithm suggested in the study, basic probability assignment function value of subsets was alloted and added to basic probability assignment function value of sets related to the subsets. This made subsets newly created become Approximation more efficiently. As a result, it could be known that certain function value which is based on basic probability assignment function is closely near actual optimal result. And certainty in correctness can be obtained while computational complexity could be reduced. by using Algorithm suggested in the study, exact information necessary for a system can be obtained.

기계 고장을 고려한 생산 및 품질검증 정책 (Lot Sizing and Quality Inspection Schedules with Machine Breakdown)

  • 이창환
    • 한국경영과학회지
    • /
    • 제21권3호
    • /
    • pp.143-157
    • /
    • 1996
  • This paper addresses the effects of an imperfect production process on the optimal production quantity and quality inspection policies. The system is assumed to deteriorate during the production process. The result are either the production of a number of defective items or the breakdown of the production meachine. A simple rule has been suggested to determine whether multiple quality in spection is workth or not. Furthermore, when multiple inspection policy is adopted, the optimal in spection schedule is shown to be equally spaced throughout the production cycle. Exact solution and approximation of the optimal production quantity and approximation of the optimal number of inspection are provided. Finally , to better understand the model of this paper, comparisons between this model and classical EMQ model are provided.

  • PDF

로테이션 래치 시스템 성능 향상을 위한 최적 설계 (Optimal Design for Improved Rotation Latch System Performance)

  • 장재환;김진호
    • 한국기계가공학회지
    • /
    • 제14권5호
    • /
    • pp.102-106
    • /
    • 2015
  • In this paper, we study the optimal design for improved rotation latch system performance. The factors affecting the Torque generated in the armature were chosen as design variables. Utilizing the vertical matrix, the orthogonal array table was created to predict the results through minimal analysis. To confirm the Torque generation amount, by utilizing the commercial electromagnetic analysis software MAXWELL, finite element analysis was performed. The approximation method and experimental design through the commercial PIDO tool PIAnO for optimal design and calculations were utilized to perform experiments using an optimization method with evolutionary algorithms. Using the approximation model, design factors were determined that can maximize the torque generated in the armature, and the simulation was performed.

OPTIMAL CONSUMPTION/INVESTMENT AND LIFE INSURANCE WITH REGIME-SWITCHING FINANCIAL MARKET PARAMETERS

  • LEE, SANG IL;SHIM, GYOOCHEOL
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제19권4호
    • /
    • pp.429-441
    • /
    • 2015
  • We study optimal consumption/investment and life insurance purchase rules for a wage earner with mortality risk under regime-switching financial market conditions, in a continuous time-horizon. We apply the Markov chain approximation method and suggest an efficient algorithm using parallel computing to solve the simultaneous Hamilton-Jaccobi-Bellman equations arising from the optimization problem. We provide numerical results under the utility functions of the constant relative risk aversion type, with which we illustrate the effects of regime switching on the optimal policies by comparing them with those in the absence of regime switching.

미기압파 저감을 위한 고속전철 열차-터널 조건의 근사최적설계 (Approximate Optimization of High-speed Train Shape and Tunnel Condition to Reduce the Micro-pressure Wave)

  • 김정희;이종수;권혁빈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1023-1028
    • /
    • 2004
  • A micro-pressure wave is generated by the high-speed train which enters a tunnel, and it causes explosive noise and vibration at the exit. It is known that train speed, train-tunnel area ratio, nose slenderness and nose shape mainly influence on generating micro-pressure wave. So it is required to minimize it by searching optimal values of such train shape factors and tunnel condition. In this study, response surface model, one of approximation models, is used to perform optimization effectively and analyze sensitivity of design variables. Owen's randomized orthogonal array and D-optimal Design are used to construct response surface model. In order to increase accuracy of model, stepwise regression is selected. Finally SQP(Sequential Quadratic Programming) optimization algorithm is used to minimize the maximum micro-pressure wave by using built approximation model.

  • PDF

A Robust and Computationally Efficient Optimal Design Algorithm of Electromagnetic Devices Using Adaptive Response Surface Method

  • Zhang, Yanli;Yoon, Hee-Sung;Shin, Pan-Seok;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권2호
    • /
    • pp.207-212
    • /
    • 2008
  • This paper presents a robust and computationally efficient optimal design algorithm for electromagnetic devices by combining an adaptive response surface approximation of the objective function and($1+{\lambda}$) evolution strategy. In the adaptive response surface approximation, the design space is successively reduced with the iteration, and Pareto-optimal sampling points are generated by using Latin hypercube design with the Max Distance and Min Distance criteria. The proposed algorithm is applied to an analytic example and TEAM problem 22, and its robustness and computational efficiency are investigated.