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A Robust and Computationally Efficient Optimal Design Algorithm of
Electromagnetic Devices Using Adaptive Response Surface Method

Yanli Zhang*, Hee Sung Yoon**, Pan-Seok Shin***, and Chang Seop Koh'

Abstract — This paper presents a robust and computationally efficient optimal design algorithm for
electromagnetic devices by combining an adaptive response surface approximation of the objective
function and (1+)) evolution strategy. In the adaptive response surface approximation, the design space
1s successively reduced with the iteration, and Pareto-optimal sampling points are generated by using
Latin hypercube design with the Max Distance and Min Distance criteria. The proposed algorithm is
applied to an analytic example and TEAM problem 22, and its robustness and computational efficiency

- are investigated.

Keywords: Adaptive Response Surface Method, Latin Hypercube Design, Optimal Design, Pareto

Optimization.

1. Introduction

Optimal design of electromagnetic devices often
involves computationally expensive finite element
analysis for performance evaluation through finding
solutions of electromagnetic fields. Especially when a
global optimization algorithm is adopted, the optimal
design procedure requires huge computing time in regards
to finite element analysis. Thus, in order to reduce the
computational work related with finite element analysis
during optimal design, response surface method (RSM)
has been developed to approximate the objective function
in the design space to a simple analytic expression,
namely, response surface [1-5]. Once constructed, this
response surface provides a rapid way of obtaining the
objective function value at any point in the design space,
and will be used in place of the finite element analysis.
Hence, the RSM has been efficiently combined with a
global optimization algorithm to determine an optimal
design even when the objective function is multimodal or
ill-conditioned [3].

As the number of sampling points increases, in general,
the fitting ability of the RSM using multi-quadric radial
basis function becomes better while numerical efficiency
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worsens. There have been rescarches, therefore, to
guarantee both numerical accuracy and efficiency at the
same time [2-4], [6-8]. These researches can be classified
into two categories. One 1s improvement of the basis
function [3-4], [7-8], and the other 1s adaptive insertion of
new sampling points based on the error estimation of the
response surface [6].

In this paper, an adaptive response surface method is
developed by coupling successive reduction of the design
space and adaptive insertion of new sampling points,
combined with (1+A) evolution strategy to give a
numerically efficient and robust optimal design algorithm.

2. RSM with Multi-quadric Radial Basis Function

When RSM is used for the global interpolation of an
objective function, multi-quadric radial basis function is
onc of the most attractive from the viewpoint of its
smoothness and fitting ability with a limited number of
sampling points in the design space. With the given
sampling data, the response surface 1s constructed as
follows [1]:

N
Sx)=2 Bg(x-x,) (1-a)
i=1
g(x)= ||x||2+h2 | (1-b)
X ={(x,,f,),i=12,---,N} (1-¢)
where || is Euclidean distance, x is a design

parameter vector, £ and f; are the coefficient and

objective function value corresponding to the i-th
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sampling point X; , respectively, X is the set of

sampling data of size N, and % is the shape parameter.
With a given shape parameter, the coefficients are
determined, using point matching technique, as follows:

18]=[g,] [/] )

where g; = g(x; —X;) 1is called the interpolation matrix.

For the choice of a good value of the shape parameter,
the interpolation error is defined using Leave-One-Out
method, and an optimal value, which minimizes the
estimated error, is found by applying (1+ 1) evolution
strategy [1].

3. Optimization Algorithm using Adaptive
Response Surface Method

Once a response surface has been constructed, a
minimum point can be easily found by applying (1+ 1)
evolution strategy. The minimum point obtained at this
stage, however, can not be considered as a true optimal
point unless sufficient number of sampling data is
involved in the construction of the response surface. This
minimum point hereinafter will be referred to a pseudo-
optimal point. In this paper, in order to find a global
optimum point, an adaptive response surface method
involving the minimum required number of sampling
points 1s suggested.

3.1 Optimization Algorithm

The proposed optimization algorithm using adaptive
response surface method can be summarized as follows:

Step 1 Define the initial design space, and generate unifo-
rmly distributed N; Pareto-optimal sampling points
in the whole design space by means of Latin hy-
percube design with Max Distance and Min Dis-
tance criteria.

Step 2 Construct a response surface using multi-quadric
radial basis function, and find a pseudo-optimal
point by applying (1+A) evolution strategy.

Step 3 Check the convergence of the pseudo-optimal
points, and stop if converged.

Step 4 Reduce the design space by a suitable factor with
the center of the current pseudo-optimal point.

Step 5 Generate additional N, Pareto-optimal sampling
points only within the reduced design space con-
centrating at the neighborhood of the current
pseudo-optimal point as in Step 1, and go to Step 2.

In the algorithm, the iteration repeats until the pseudo-
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Fig. 1. Comparison of the Latin hypercube sampling points
of size n=20 with two design variables.

optimal points converge, and the converged pseudo-
optimal point is considered as a true optimal point.

3.2 Initial Sampling Points using Latin Hypercube
Design with Pareto-optimization

Latin hypercube design (LHD) 1s a type of space-filling
experiment design strategy [9]. It corresponds to a (nxk)
matrix where » and k are the numbers of sampling points
and design variables, respectively. In order to distribute
‘the sampling points, each variable is divided into »
intervals with equal probability and each of the & columns
is a random permutation of {1,2,...,n} which can be
mapped onto the actual range of the variables.

Although sampling data can be randomly generated
using LHD, it may have poor quality, as shown in Fig.
1(b), in the viewpoint of uniform space-filling.
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3.2.1 Criteria for Sampling Points

The quality of a sampling data set is evaluated, in the
viewpoint of space-filling, by introducing Max distance
and Min distance criteria.

The Max Distance criterion is defined as follows [9]:

Max Distance = Max{

xeD

Mn d(x,x, )} (3)

X;eX

where D is design space, X is sampling data set, and d(-,)
is Euclidean distance between any two points in D. This
criterion physically means possible maximum distance
from an arbitrary point in the design space to the nearest
sampling point.

‘The Min Distance criterion, of which the physical
meaning 1s minimum distance between any two sampling
points, is defined as in [9]:

Min Distance = Min d(x. x.) 4)

i
X;,X; €X

A set of sampling points minimizing the Max Distance
criterion 1s called Minimax design, and it is expected to
cover all the design space with minimum distance as
shown i Fig. 1(c). In this design, however, some
sampling points may be located very closely to each other.
On the contrary, a set of sampling points, obtained by
maximizing the Min Distance criterion and known as
Maximin  design, locates some sampling points

unexpectedly on the boundary of the design space as
shown in Fig. 1(d).

3.2.2 Pareto-optimal Sampling Points

In the viewpoint of space-filling quality, a set of
sampling points, which minimizes the Max Distance
criterion and maximizes the Min Distance criterion,
simultaneously is considered as the best one. However, the
two goals, minimizing the Max Distance criterion and
maximizing the Min Distance criterion, conflict with each
other, and selecting a good sampling data arrives at a
multi-objective optimization problem.

In this paper, a Pareto-optimal set of sampling data is
obtained by using (1+A) evolution strategy where the
optimization objective is “Minimize Max Distance and
Maximize Min Distance”.

Fig. 1(a) shows a Pareto front in the two criteria space
from which an acceptable set of sampling data is selected.
Fig. 1(e) shows a distribution of finally selected sampling
data, where the design space is almost uniformly covered
by the sampling points.

3.3 Reduction of Design Space and Adaptive Inserting
of New Sampling Points

Once a pseudo-optimal pomt is found at the initial
iteration by scanning the entire design space, a true
optimal point 1s assumed to exist not too far from the
pseudo-optimal pomt. With this assumption, the region of
interest may be reduced, 1.¢., the design space is reduced
by a suitable factor (for example 0.618) for more precise
investigation without missing a true optimal point.
Furthermore, by confining our interest to only the reduced
design space, a more accurate response surface can be
efficiently obtained by inserting only a few sampling
points.

In this stage, the additional sampling points are
generated by means of LHD using Gaussian random
numbers, so that they are concentrated near the pseudo-
optimal point, 1.e., by letting the mean value correspond to
the pseudo-optimal point, and by controlling the standard
deviation, the degree of closeness to the pseudo-optimal
point is controlled. The Pareto optimization is also
adopted to select a good set of additional sampling points.
During the Pareto optimization, the distance, d(-,’), is
rescaled and computed as follows:

d(xi,xj)zd(xi,xj)-d((xi+xj)/2,xp) (5)

where X, is the pseudo-optimal point.

It should be noted that the reducing factor has strong
influence on the robustness and convergence rate of the
suggested optimization algorithm, namely, a small value
of the reducing factor may increase the robustness, but
will decrease the convergence rate. Several tests with
analytic functions show a factor of 0.85 or 0.618 giving a
good convergence without falling into local minima.

Fig. 2 presents an example of the additional insertion of
16 sampling points with a reducing factor of 0.85 to the
old sampling points shown 1n Fig. 1(e).
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Fig. 2. The insertion of the sampling points using LHD
based on Gaussian distribution.
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4. Numerical Experiments

4.1 Analytic Function with Two Design Variables

In order to illustrate graphically the proposed procedure,
an analytic function with two design variables is taken as
an example. The objective function to be minimized in the

range of —-3.0<x,x, <3.0 is given as [4]:

F(x)=3(01- xl)ze['x‘z “Cat)
(6)

X 3 5 2y 2 1 22
—~10(—51——x1 —x, )l ] )

3

This analytic function has 3 local maxima, 1 local
minimum, and 1 global minimum point at (0.2282, -
1.6256) with corresponding objective function value -
6.5511. |

Fig. 3 shows the variation of the response surfaces and
distributions of the sampling points as the new sampling
points are inserted at each iteration. At the initial iteration,
25 sampling points are generated in the whole design
space using Pareto-optimal LHD, and a response surface
1s constructed to give a pseudo-optimal point of (0.5035,-
1.400) as presented in Fig. 3(a). At the second and third
iterations, as indicated in Fig. 3(b) and Fig. 3(c), the
design space is successively reduced by a factor of 0.85,
and 16 and 11 additional sampling points are inserted
concentrating at the neighborhood of the previous pseudo-
optimal points, respectively. After the fourth iteration with
additional 6 sampling points, a converged pseudo-optimal
point (0.2278, -1.6254) and corresponding objective

function value -6.5513 are obtained.
~ Fig. 4 shows the convergence of the objective function
value and the pseudo-optimal points during the iterations.
It can be seen that the pseudo-optimal point converges
robustly to the true global optimal point with the iterations.

4.2 Electromagnetic Application

Fig. 5(a) gives a superconducting magnetic energy
storage device (SMES) model, taken from TEAM
Problem 22 [10], which consists of two concentric coils
with current densities J; and J, , respectively, which are in
opposite directions. The design target is determining the
optimum design parameters that minimize the following
objective function:

B’ Energy—E
OF === +| /
B E

norm ref

(7-1)

22

1
B =—>» B> _E_=180MJ,B__=3x10"T (7-2)

stray 22 ~ stray,i’® " ref

(a) initial 25 sampling points and corresponding response
surface

(d) final 58 sampling points and corresponding response
surface

Fig. 3. Response surfaces and movement of the pseudo-
optimal point (The symbols have the same
meaning as in Fig. 2.).
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Fig. 4. Convergence of the suggested optimization strategy.

where the stray field Bg,,, is evaluated at 22 equidistant
points along lines @ and b, as shown in Fig. 5(a), and
Energy is the stored magnetic energy. The three design
variables are associated with the external coil (R,, 4,, d>),
and the ranges and fixed values are listed in Table I.

The magnetic field analysis of the SMES system was
done by using a finite element code using a triangular
element of second order (around 14,800 nodes and 7,400
elements). An artificial boundary was placed relatively far,
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at 20m from the coils’ center.

During the optimization procedure, the initial 80
Pareto-optimal sampling points were distributed in the
whole design space, and followed by the successive
additional insertion of 51, 32, and 17 sampling points into
the reduced design space with a factor of 0.618 to the
previous region. The field plot of optimal configuration
obtained by the above optimization strategy is shown in
Fig. 5(b).

Table II compares the performance of the proposed
method with those of the other reported solutions. The
best solution for this problem is reported in [10] as listed
in Table II. From the table, the proposed algorithm
requires only 180 finite element analysis with a good
global optimum solution, while the other algorithms
require at least more than two times of analysis.

5. Conclusion

A global optimization algorithm has been presented by
combining an adaptive response surface method

2(m)

line a

o, “J)1

axis of rotation

f Y

4

(a)design variables

(b) flux line

Fig. 5. SMES model from TEAM problem 22, where the
flux line is from the optimal design.

Table 1. Variable Ranges and Values Used

Variable R, h/2 d, R, hJ2 d, J. J,
[Unit]  [m} [m] [m] [m] [m] ([m] MAmY [MAmY
Min - - - 26 0204 0.1 - -
Max - - - 34 11 04 . ]
Value 20 08 0.27 - L= - 22.5 -22.5

Table 2. Comparison of Different Algorithms

Algorithm R, k)2 d, OF c‘j;p‘iﬁffxs
Proposed 3003 0239 0391  0.0895 180
RSM[8] 309 0242 0389  0.082 495
GA[l1] 305 0246 0400  0.122 2400

TEAM[10] 3.08 0.239 0.394 0.088 -

employing successive reduction of design space, adaptive
inserting of sampling points, and (1+A) evolution strategy.
The numerical results indicate that the proposed
optimization strategy is very robust and computationally
efficient with fewer sampling points and higher
computation efficiency.
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