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Abstract

The approximation for the distribution functions of nonparametric test statistics is a significant step in sta-

tistical inference. A rank sum test for dispersions proposed by Ansari and Bradley (1960), which is widely

used to distinguish the variation between two populations, has been considered as one of the most popular

nonparametric statistics. In this paper, the statistical tables for the null distribution of the nonparametric

Ansari-Bradley statistic is produced by use of polynomially adjusted normal approximation as a semi para-

metric density approximation technique. Polynomial adjustment can significantly improve approximation

precision from normal approximation. The normal-polynomial density approximation for Ansari-Bradley

statistic under finite sample sizes is utilized to provide the statistical table for various combination of its

sample sizes. In order to find the optimal degree of polynomial adjustment of the proposed technique, the sum

of squared probability mass function(PMF) difference between the exact distribution and its approximant

is measured. It was observed that the approximation utilizing only two more moments of Ansari-Bradley

statistic (in addition to the first two moments for normal approximation provide) more accurate approx-

imations for various combinations of parameters. For instance, four degree polynomially adjusted normal

approximant is about 117 times more accurate than normal approximation with respect to the sum of the

squared PMF difference.
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1. Introduction

Nonparametric approaches have been extensively discussed over the course of many decades. Many

authors, such as Barton and David (1958), Terry (1952) and Mood (1954) studied in connections

with nonparametric tests on dispersions. The most important procedure for the nonparametric

test statistics is to determine null distributions, from which the exact critical values of the test
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statistics can be calculated. In order to obtain the probabilistic quantities of those tests, com-

binatorial methods are commonly utilized since the nonparametric statistics are distribution-free;

however, the procedures to calculate the exact critical values to obtain the combinations of the

possible outcomes are complicated and time consuming as the number of sample sizes increases.

Under these circumstances, approximation methods to provide enough accuracy is necessary to

allow computationally easy implementation and distribution approximation techniques, that in-

clude asymptotic approximation, have played essential roles in nonparametric testing. Recently,

many researchers applied various higher order asymptotic approximation methods for nonparamet-

ric statistics. For instance, Froda and Eeden (2000) used a uniform saddlepoint expansion to the

null distribution of the Wilcoxon-Mann-Whitney test, and Bean et al. (2004) compared several

approximation methods such as saddlepoint, Edgeworth, uniform and normal approximations for

the Wilcoxon-Mann-Whitney test under finite sample sizes.

For the approximation presented in this study, an approximation technique in distribution theory

(called the normal-polynomial approximation) is utilized to provide an accurate approximation for

the null distribution of the Ansari-Bradley statistic. Its main concept and computing procedures

were proposed in Ha and Provost (2007). While Provost et al. (2009) explained that beta-polynomial

approximation provides high accuracy for Ansari-Bradley statistic, this paper aims to show that

normal-polynomial approximation is also very flexible and fast to adapt the features of the target

distributions. We observed that the normal polynomial approximant requires only four moments

in most cases to provide accuracy.

In Section 2 and Section 3, the generating function and moments of the Ansari and Bradley statistic

and the brief introduction to normal-polynomial approximation are introduced, respectively. In

Section 4, normal-polynomial approximation to the null distribution of the Ansari and Bradley

statistic is applied in various combinations of two independent sample sizes and the approximation

accuracy with respect to the degree of polynomial adjustment is compared in terms of the sum of

squared probability mass function difference. The concluding remarks are provided in Section 5.

2. Ansari-Bradley Statistic

On denoting X1, . . . , Xm and Y1, . . . , Yn two independent samples of sizes m and n of independent

observations, where m is less than n, from two populations with continuous cumulative distribution

functions, A(t) and B(t), respectively, we assume that the difference in location parameters of the

two populations is known to be zero. The location parameters of the two populations need not

to be known. Then A(t) and B(t) are assumed to be of the same form and to differ at most in

the value of a scale parameter α, so that B(t) = A(α t). Ansari and Bradley (1960) developed a

rank-order test of the null hypothesis,

H0 : α = 1, i .e., B(t) = A(t), (2.1)

against either one-sided or two sided alternatives to H0. The two independent samples of sizes m

and n of independent observations are ranked or ordered in a combined array represented by

Z1, . . . , Zm+n. (2.2)

If the difference of the two population means exists, one may adjust by the mean difference without

loss of generality. The ranks are assigned from both ends of (2.2), beginning with unity and working

towards the center. The ranks can differ due to the sum of two sample sizes. If m+ n is even, we
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have the ranks

1, 2, 3, . . . ,
m+ n

2
,
m+ n

2
, . . . , 3, 2, 1. (2.3)

That is, the ranks denoted by R(Z) can be assigned as

R(Z1) = 1, R(Z2) = 2, . . . , R
(
Zm+n

2

)
=
m+ n

2
, (2.4)

R
(
Zm+n

2
+1

)
=
m+ n

2
, . . . , R(Zm+n−1) = 2, R(Zm+n) = 1.

In addition, if m+n is odd, we have the symmetric array of ranks with the center of (m+n+1)/2

1, 2, 3, . . . ,
m+ n− 1

2
,
m+ n+ 1

2
,
m+ n− 1

2
, . . . , 3, 2, 1. (2.5)

The ranks in this case can be assigned in the similar way of the case that m+n is even. The Ansari

and Bradley nonparametric test statistic is the sum of the ranks associated with the X-sample, that

is,

W =
∑
X

R(Z). (2.6)

If the Ansari-Bradley statistics forX and Y samples are different, it means that the scale parameters

of two populations can more likely be considered different to each other.

We are interested in the null distribution of the Ansari-Bradley statistic W . It is tedious to carry

on the statistical tables for the exact null distributions of all possible combinations of sample sizes.

But interestingly, its frequency generating function, which fully facilitates consideration of its null

distributions, can be simply expressed. As derived in Ansari and Bradley (1960), its frequency

generating function of W given the sample sizes m and n, denoted by gW (u, v |m,n), is

gW (u, v |m,n) =



N∏
i=1

(
1 + uiv

)2
, if m+ n = 2N,

(
1 + uN+1v

) N∏
i=1

(
1 + uiv

)2
, if m+ n = 2N + 1,

(2.7)

the corresponding probability denoted by P (W = w |m,n) is the coefficient of uwvm in the expan-

sions of the above Equation (2.7) over Binomial(m+ n,m). And Ansari and Bradley (1960) kindly

provided the explicit expressions for the important statistical quantities such as the mean, variance

and skewness and kurtosis, which are the main information to be used in the proposed technique.

In the case of m+ n = 2N ,

E(W ) = µW =
m(m+ n+ 2)

4
(2.8)

and

σ2
W =

mn(m+ n− 2)(m+ n+ 2)

48(m+ n− 1)
. (2.9)

The third and fourth moments can be explicitly obtained as follows.

µ3 = 0, (2.10)
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and

µ4 =
mn(m+ n+ 2)

3840(m+ n− 3)(m+ n− 2)(m+ n− 1)

{
5mn(m+ n)4 − 2

(
m2 + 19m4n+ 52m3n2

+52m2n3 + 19mn4 + n5)+ 4
(
3m4 + 16m3n+ 26m2n2 + 16mn3 + 3n4)

− 4
(
6m3 − 34m2n− 34mn2 + 6n3)− 16

(
2m2 + 25mn+ 2n2)+ 96(m+ n)

}
. (2.11)

Although the higher moments to determine the tail probabilities are expressed in complicated form,

they can be computed based on their generating functions.

When m+ n = 2N + 1, the slightly different mean and variance were also be derived as

E(W )(= µW ) =
m(m+ n+ 1)2

4(m+ n)
(2.12)

and

σ2
W =

mn(m+ n+ 1)(3 + (m+ n)2)

48(m+ n)2
. (2.13)

The third and fourth moments are

µ3 =
mn(n−m)(m+ n− 1)(m+ n+ 1)2

32(m+ n− 2)(m+ n)3
(2.14)

and

µ4 =
mn(m+ n+ 2)

3840(m+ n− 3)(m+ n− 2)(m+ n− 1)

{
5mn(m+ n)6 −

(
2m7 + 17m6n+ 57m5n2

+ 100m4n3 + 100m3n4 + 57m2n5 + 17mn6 + 2n7)+ 2
(
m6 + 14m5n+ 47m4n2 + 68m3n3

+ 47m2n4 + 14mn5 + n6)+ 2
(
2m5 − 35m4n− 115m3n2 − 115m2n3 − 35mn4 + 2n5)

+ 15
(
4m4 −m3n− 10m2n2 −mn3 + 4n4)+ 15

(
2m3 + 9m2n+ 9mn2 + 2n3)− 30

(
m2

− mn+ n2)} . (2.15)

3. Polynomially Adjusted Normal Approximations

Provost et al. (2009) used a beta-polynomial approximant to the target distribution. In this paper,

we utilize a special type of general semi parametric approach (the normal-polynomial approxima-

tion) proposed in Ha and Provost (2007). Let W be a discrete random variable whose support is

the closed interval and let its raw moments E(Wh) be denoted by µW (h), h = 0, 1, . . . . We are

interested in approximating the probability mass functions of the discrete random variable W . A

polynomially adjusted normal approximation of degree d, denoted by rd(w), is

rd(w) = s(w)

d∑
i=0

θiw
i . (3.1)

Note that this density approximant is expressed as the product of normal approximation, s(w),

which can be considered as an initial approximation, and a polynomial adjustment,
∑d

i=0 θiw
i.

That is, the normal approximation is

s(w) =
1√
2πσ2

s

Exp

(
− (w − µs)

2

2σ2
s

)
. (3.2)
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The two parameters µs and σ2
s of the normal approximation are estimated from the first two

moments of target distribution as follows:

µs = µW and σ2
s = σ2

W . (3.3)

The hth raw moment of the normal approximation can be expressed as

µs(h) =
2

h
2
(
1 + (−1)h

)
Γ
(
1+h
2

)
4
√
π

+
h∑

j=0

(
h

j

)
3j4h−j−12

j
2 (1 + (−1)j)Γ

(
1+j
2

)
√
π

. (3.4)

From the moment matching technique between the moments of the target distribution and the

normal approximation, we can obtain the coefficients θi of the polynomial adjustment. That is, the

coefficients θi satisfy the following matrix form equation,
θ0
θ1
...

θd

 =


µs(0) µs(1) · · · µs(d− 1) µs(d)

µs(1) µs(2) · · · µs(d) µs(d+ 1)
...

...
. . .

...
...

µs(d) µs(d+ 1) · · · µs(2d− 1) µs(2d)


−1

1

µW (1)
...

µW (d)

 . (3.5)

In order to obtain distribution approximant Rd(w), one can simply use numerical integration, that

is
∫ t

0
rd(w)dw. The continuity correction should be used to approximate discrete distributions via

continuous function. That is, the approximation to the distribution of a nonparametric statistic

will be corrected as Rd(t) =
∫ t+1/2

0
rd(w)dw.

An important step for the proposed method is the determination of optimal degree of polynomial

adjustment. A suitable choice of optimal degree can be decided via minimizing the sum of squared

differences between the exact null and approximated probability mass function. The sum of squared

difference over the entire range between the exact and approximated PMF’s can be measured as

DPMF =

MaxW∑
i=MinW

(P (W = i |m,n)− rd(i))
2 , (3.6)

where MinW and MaxW are, respectively, the possible minimum and maximum values of Ansari-

Bradley statistic. For instance, if m and n are even numbers, MinW = (m2 +2m)/4 and MaxW =

(m2+2mn+2m)/4. The difference with respect to probability distribution function can be measured

as

DDF =

MaxW∑
i=MinW

(
i∑

j=MinW

P (W = j |m,n)−Rd(i)

)2

. (3.7)

4. Numerical Results

Ratio of Difference Measures for Various Combinations

We consider approximating null distributions of Ansari-Bradley statistic with various combinations

of its independent two sample sizes. Table 4.1 shows the optimal degree(OD) of polynomial adjust-

ment and the ratios(ROD and RODC) of difference measures for normal and polynomially adjusted

approximations. The 4th degree is chosen as the optimal degree in most cases except for very small
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Table 4.1. Ratios of difference measures for various combinations

4 6

OD DPMF ODC DDF OD DPMF DDF RODC

4 16 2.39459 16 1.9838

6 4 4.96275 4 8.38059 4 2.5191 4 9.339

8 4 2.58864 4 10.5679 4 31.2161 4 67.778

10 4 9.56948 4 48.41 4 17.0416 4 108.847

12 4 108.939 4 230.89
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Figure 4.1. The PMF difference measures according to the degrees of polynomial adjustment when m = 7 and n = 9(left
panel); The distribution difference measures(right panel)
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Figure 4.2. 4th degree Normal-Polynomial Approximant(solid) and Exact PMF(dotted) when m = 7 and n = 9(left panel); 4th

degree Normal-Polynomial Distribution Approximant(solid) and Exact Distribution (dotted) when m = 7 and n = 9(right panel)

sample sizes, for instance, m = 4 and n = 4. The accuracy of polynomially adjusted normal approx-

imations is observed to consistently and severely be improved when two sample sizes are not small.

For instance, when m = 6 and n = 12, the polynomially adjusted normal approximation is over

108 and 230 times more accurate than normal approximation in terms of the proposed difference

measures in defined (3.6) and (3.7), respectively.

Case of m = 7m = 7m = 7 and n = 9n = 9n = 9

We consider an example of Ansari-Bradley statistic where its sample sizes are seven and nine, that

is m = 7 and n = 9. Figure 4.1 shows the PMF difference measures defined in (3.6) according

to the degrees of Polynomial Adjustment in left panel and distribution difference measures defined

in (3.7) in right panel. As can be seen in the Figure, 4th degree polynomially adjusted normal

approximation, which uses only two more moments than normal approximation, dramatically re-

duces the approximation error and provides high approximation accuracy. This is the benefit to use
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Figure 4.3. Normal Approximation (tiny dashing), 4th (large dashing) and 26th degree Normal-Polynomial Approximations
(solid) and Exact PMF (dotted) When m = 4 and n = 4 (left panel); The Proposed Difference Measures According to the
Degrees of Polynomial Adjustment When m = 4 and n = 4 (right panel).

polynomially adjusted normal approximation. Figure 4.2 shows the graphical representation that

4th degree normal-polynomial density and distribution approximants(solid) in the left and right

panel, respectively, show close agreements with the exact null distribution(dotted).

Case of m = 4m = 4m = 4 and n = 4n = 4n = 4

The null distribution of Ansari-Bradley with m = 4 and n = 4 is an interesting and challenging case

since normal approximation may fail to provide enough accuracy, and one can see that the proposed

methodology is flexible to adapt the unique feature and provide high approximation accuracy.

Due to the unusual feature, it is rare that the 26th degree as an optimal degree of the proposed

approximation is much larger than the usual 4th degree. As can be seen in the left panel of Figure

4.3, while 4th degree normal approximation cannot adapt the behavior of the target PMF(dotted)

in mode area, 26th degree normal polynomial approximant can interestingly accurately follow the

target.

5. Concluding Remarks

The normal-polynomial approximation to the distribution of the Ansari-Bradley statistic is consid-

ered in this paper. The proposed approximation provides significant accuracy in approximations for

statistical quantities of the Ansari-Bradley statistic. From the numerical results, it is determined

that the approximation can provide accurate critical values of the target distribution. It should

be noted that the normal-polynomial approximation also provides the explicit representation for

the approximated density. Selection for the optimal degree of the polynomial adjustment was also

proposed to obtain a suitable approximation. The continuity correction should be used to ap-

proximate a discrete distribution via a continuous function. The symbolic computational package

Mathematica was utilized to obtain the numerical examples.
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