• Title/Summary/Keyword: operators on function spaces

Search Result 55, Processing Time 0.028 seconds

SOME APPLICATIONS FOR GENERALIZED FRACTIONAL OPERATORS IN ANALYTIC FUNCTIONS SPACES

  • Kilicman, Adem;Abdulnaby, Zainab E.
    • Korean Journal of Mathematics
    • /
    • v.27 no.3
    • /
    • pp.581-594
    • /
    • 2019
  • In this study a new generalization for operators of two parameters type of fractional in the unit disk is proposed. The fractional operators in this generalization are in the Srivastava-Owa sense. Concerning with the related applications, the generalized Gauss hypergeometric function is introduced. Further, some boundedness properties on Bloch space are also discussed.

Fractional Integrals and Generalized Olsen Inequalities

  • Gunawan, Hendra;Eridani, Eridani
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.1
    • /
    • pp.31-39
    • /
    • 2009
  • Let $T_{\rho}$ be the generalized fractional integral operator associated to a function ${\rho}:(0,{\infty}){\rightarrow}(0,{\infty})$, as defined in [16]. For a function W on $\mathbb{R}^n$, we shall be interested in the boundedness of the multiplication operator $f{\mapsto}W{\cdot}T_{\rho}f$ on generalized Morrey spaces. Under some assumptions on ${\rho}$, we obtain an inequality for $W{\cdot}T_{\rho}$, which can be viewed as an extension of Olsen's and Kurata-Nishigaki-Sugano's results.

ON THE CLOSED RANGE COMPOSITION AND WEIGHTED COMPOSITION OPERATORS

  • Keshavarzi, Hamzeh;Khani-Robati, Bahram
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.217-227
    • /
    • 2020
  • Let ψ be an analytic function on 𝔻, the unit disc in the complex plane, and φ be an analytic self-map of 𝔻. Let 𝓑 be a Banach space of functions analytic on 𝔻. The weighted composition operator Wφ,ψ on 𝓑 is defined as Wφ,ψf = ψf ◦ φ, and the composition operator Cφ defined by Cφf = f ◦ φ for f ∈ 𝓑. Consider α > -1 and 1 ≤ p < ∞. In this paper, we prove that if φ ∈ H(𝔻), then Cφ has closed range on any weighted Dirichlet space 𝒟α if and only if φ(𝔻) satisfies the reverse Carleson condition. Also, we investigate the closed rangeness of weighted composition operators on the weighted Bergman space Apα.

A NOTE OF LITTLEWOOD-PALEY FUNCTIONS ON TRIEBEL-LIZORKIN SPACES

  • Liu, Feng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.2
    • /
    • pp.659-672
    • /
    • 2018
  • In this note we prove that several classes of Littlewood-Paley square operators defined by the kernels without any regularity are bounded on Triebel-Lizorkin spaces $F^{p,q}_{\alpha}({\mathbb{R}}^n)$ and Besov spaces $B^{p,q}_{\alpha}({\mathbb{R}}^n)$ for 0 < ${\alpha}$ < 1 and 1 < p, q < ${\infty}$.

Anisotropic Variable Herz Spaces and Applications

  • Aissa Djeriou;Rabah Heraiz
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.2
    • /
    • pp.245-260
    • /
    • 2024
  • In this study, we establish some new characterizations for a class of anisotropic Herz spaces in which all exponents are considered as variables. We also provide a description of these spaces based on bloc decomposition. As an application, we investigate the boundedness of certain sublinear operators within these function spaces.

RESULTS ON STRONG GENERALIZED NEIGHBORHOOD SPACES

  • Min, Won-Keun
    • The Pure and Applied Mathematics
    • /
    • v.15 no.3
    • /
    • pp.221-227
    • /
    • 2008
  • We introduce and study the new concepts of interior and closure operators on strong generalized neighborhood spaces. Also we introduce and investigate the concept of sgn-continuity on SGNS.

  • PDF

Imrovement of genetic operators using restoration method and evaluation function for noise degradation (잡음훼손에 적합한 평가함수와 복원기법을 이용한 유전적 연산자의 개선)

  • 김승목;조영창;이태홍
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.5
    • /
    • pp.52-65
    • /
    • 1997
  • For the degradation of severe noise and ill-conditioned blur the optimization function has the solution spaces which have many local optima around global solution. General restoration methods such as inverse filtering or gradient methods are mainly dependent on the properties of degradation model and tend to be isolated into a local optima because their convergences are determined in the convex space. Hence we introduce genetic algorithm as a searching method which will search solutions beyond the convex spaces including local solutins. In this paper we introudce improved evaluation square error) and fitness value for gray scaled images. Finally we also proposed the local fine tunign of window size and visit number for delicate searching mechanism in the vicinity of th global solution. Through the experiental results we verified the effectiveness of the proposed genetic operators and evaluation function on noise reduction over the conventional ones, as well as the improved performance of local fine tuning.

  • PDF