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Abstract

In this paper, we investigate the properties of implicative closure operators on the stsc-quantale L. We find implicative

closure operators induced by a function.
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1. Introduction and preliminaries

Closure operators play an important role in topological
spaces, lattices, Boolean algebras, convex sets, deductive
systems [1-4, 8,12]. Recently, Gerla ef al. [3,4] studied
fuzzy closure operators as extensions of closure operators.
Bélohldvek [2] and Rodriguez et al. [12] introduced fuzzy
closure spaces and implicative closure spaces, respectively,
as a sense that if A; is almost a subset )\, then the closure
of A; is almost a subset of the closure of \y. They have
been developed in many view points.

On the other hand, quantales were introduced by Mul-
vey [10,11] as the non-commutative generalization of the
lattice of open sets in topological spaces. Recently, quan-
tales have arisen in an analysis of the semantics of lin-
ear logic systems developed by Girard [5], which supports
part of foundation of theoretic computer science. Recently,
Hohle [7] developed the algebraic structures and many val-
ued topologies in a sense of quantales and cqm-lattices.

In this paper, we investigate the properties of implica-
tive closure operators on the stsc-quantale L. We find im-
plicative closure operators induced by a function. We give
their examples.

Definition 1.1. [7, 10,11] A triple (L, <,®) is called a
strictly two-sided, commutative quantale (stsc-quantale, for
short) iff it satisfies the following conditions:

QD L= (L,<,V,A,1,0) is a completely distributive
lattice where 1 is the universal upper bound and 0 denotes
the universal lower bound;

(Q2) (L, ®) is a commutative semigroup;

Q3)a=a®1,foreacha e L;

(Q4) ® is distributive over arbitrary joins, i.e.

(\/ai)Qb:\/(ai@b).

Remark 1.2. [7](1) A completely distributive lattice is
a stsc-quantale. In particular, the unit interval ({0, 1], <
,V, A, 0,1) is a stsc-quantale.
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(2) The unit interval with a left-continuous t-norm ¢,
([0, 1], <, t), is a stsc-quantale.

(3) Let (L, <, ®) be a stsc-quantale. Foreach z,y € L,
we define

m—>y:\/{z€L|x®z§y}.

Then it satisfies Galois correspondence, that is,
zOy<Lziffz < (y— 2).

In this paper, we always assume that (L, <,©,*) is a
stsc-quantale with an order-reversing involution* defined
byz* =2 — 0.

Lemma 1.3, [7,13] Let (L, <, ®) be a stsc-quantale. For

each z,y, z, z;,y; € L, we have the following properties.
MWy <2(z0y) <(z0z),z >y <z — zand

z—=x<y—7T.
Qzxoy<zAy<
Bz — (Nier yz) = Nier(
@ (Vier z:) =y = Nier(z: = 9)
Sz — (\/1,61_‘ yz) 2 (x - Yi)
(6) (/\ier ) -y 2 Vzer(xz - )
MD(zoy) mz=a—-(y—2)=y—(z—2).
®)zO(zx—y)<yand

Vy.
T = y;)

Nie
Nie
Vie

Ty < (y—2)— (@ 2),
D{z—y)oz<z— (YO 2).
(0)z—-y<(z6Gz2) = (y©2).
Az —-y=1liffx <y.

1Dz —-y=y" — z*.

Definition 1.4. [1,2,8] A function £ : X x X — L s
called an ®-equivalence relation if it satisfies the following
conditions:

(El) E(z,z) =1,

(E2) E(z,y) = E(y, z),

(E3) E(z,9) © E(y,2) < E(z, 2).
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All algebraic operations on L can be extended point-
wisely to the set L as follows: forall z € X, A\, u € LX
ando € L,

);

M AL piff Mz) < p(z
© p(z);

@ (A6 p)(@) = A(#) © u();
3 1(z) =1, @(z)=aand0(zx)=0;
N 34) (a.—> N(@) = a - Mz)and (A — a)(z) =

5) (O N)(z) = a® A(z).
XWe denote (A, ] = A, cx(Mz) — p(x)), for A, u €
LA,

2. Implicative closure operators

Definition 2.1. [12] An operator C' : LX — LX is called
an implicative closure operator on X if it satisfies the fol-
lowing conditions: for each « € L and A\, u € LX,

Cp < Cp),

(C2)if A < p, then C(N) < C(u),

(C3) C(C(u)) < C(p),

CHC(aOp) > a6 Cp).

The pair (X, C) is an implicative closure space. Let
C1 and C; be implicative closure operators. We say C is
coarser than C iff C;(\) < Cy(A) foreach A € L.

Let (X, C1) and (Y, C3) be implicative closure spaces.
A function f : X — Y is called a C-map if f(C1(u)) <
Ca(f(u)) foreach u € LX.

Remark 2.2. We define implicative closure operators
C1,Cy : LX — LX as follows:

Ci(A) =X, Co(\) =1, vae LX.
If C' is an implicative closure operator, then Cy < C' < Cj.

Theorem 2.3. (1) If C : LX — LX satisfies the con-
ditions (C2), then the condition (C4) holds iff C satisfies
(CH*Ck > N)<k—-C(\)forke Land )\ € LX.

QI C : L* — LX satisfies the conditions (C2) and
(C4), then [)\1, )\2] < [C()\l), C()\z)]

Proof. (1) (=) Since k © (k — A) < X from Lemma
1.3(8), by (C2) and (C4), we have

E®Ck — ) SC(k@(k—»)\))
<cO.

Itimplies C(k — ) < k — C()\).
(=) Since u < k — (k © p), we have

Clw) <Ck— (ko p)

<k—Cko.p).

It implies £ © C(A) < k ® C(\).
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(2) Since A1 @ [A1,A2] < Ag, by (C2) and (C4), we
have

AL A2l ©C (A1) < C([M,A2] © )

<C(A2).

Hence [A1, A2] < [C(A1),C(A2)].
O

Remark 2.4. (1)If C : LX — L satisfies the conditions
(C1), (C2) and (C3), then C' is a fuzzy closure operator in
Biacino and Gerla’s sense [3,4].

Q) IfC : LX — LX satisfies the conditions (C1), (C3)
and (C2)*,

(CD* [A1, A2] < [C(\1),C(A2)],

then C is a fuzzy closure operator in a Bélohldvek’s
sense [1,2]. In (C2)*, if [A;,A2] = 1 implies
[C(A1),C(A2)] = 1, then the condition (C2) holds. The
condition (C2)* is interpreted if A is almost a subset Ao,
then the closure of \; is almost a subset of the closure of
Ao,

(3) If C' is an implicative closure operator, by Theorem
2.3(2), then C'is a fuzzy closure operator in a Bélohldvek’s
sense [1,2].

Example 2.5. Let (L = [0,1],®) be a stsc-quantale de-
fined by
rQy=(x+y—-1)VvO0,

r—oy=_1—-z+y) AL
Let X = {a,b} and p, A\, A2 € L% as follows:

pla) = 0.4, pu(b) = 0.7, Ai(a) =0.5,A1(b) = 0.5,
Aa(a) = 0.2, Ao(b) = 0.5.

Define C : LX — LX as follows:

poifA< g,
c = { 1 otherwise.

(1) Since C satisfies the conditions (C1), (C2) and (C3),
then C is a fuzzy closure operator in a sense Biacino and
Gerla [3,4].

(2) Since 0.7 = [)\1, )\2] ﬁ [C()\l), C()\g)] = [T, ,u] =
0.4, C is not a fuzzy closure operator in a Bélohldvek’s
sense.

(3) Since u = C(0.70 A1) 20.70C(\) =0.7,Cis
not an implicative closure operator.

Theorem 2.6. Let E ¢ LX*X be an ®-equivalence rela-
tion. Define an operator C : LX — LX as follows:

CMN@) = \/ (\z) @ E(z,2)).

zeX

Then C is an implicative closure operator on X .



Proof. (C1) It follows from C(\)(z) < Az) ® E(z,z) =

Az).

(C2) and (C4) are easily proved.

(C3) It follows from:
C(CN)(z)
= V.ex(C(N)(2) © E(z,2))
= V.ex ( Vyex(My) © (E(y,
= VyeX Ay) @ \/zeX(E
<Vyex(Ay) © E(y, z))
= C(A){=).

Hence C is an implicative closure operator on X

z) ® B(z, a:)))
(v,2) © B(,2))))

O

Theorem 2.7. For u € LX, we define an operator Cu
LX — LX as follows:

CuM) () = A ] = p(=).
Then the following properties.

(1) C,, is an implicative closure operator on X .

(2) L(A)* = Cpe (A), where I, (V) (x) = [, lopu(y)
forall A e LX,

Proof. (1) (C1) Since A ® [\, y] < p, then
A< [Mp] = p=Cu(N).
(C2)If Ay < Ay, then [Aq, p] > [Aa, y]. So,
Cu(A) =
(C3) Since

(A, p] —
< [\

A, 0] = 1 < Ao, p] = = Cu(Xa).

—pu<[Apl—p
O ([ u] = w) < u,

then (A, p] < [[X, p] — p, p].
Cu(Cu(N)

It implies

AN

(C4) Since [k © A\, pu] =
1.3(3)and (7), we have

kOO o (A — p)
=k (k— [Au]) o (A u] —p
<u) oA —p) <p

k — [A p] from Lemma

It implies

kO Cu(A) =ko (A p]—p) <
=CukOA).
(2) By Lemma 1.3(7)and (12), we have
L) = ((w. X @ p)* =[] — p*
= ] = i = Cue (V).

oAy —p

Implicative Closure Operators

Example 2.8. Let (L = [0,1],®) be a stsc-quantale de-
fined by

xOy=(+y—-1)Vvo0,

r—oy=1—-z+y) Al
Let X = {a,b} and p, A, p € LX as follows:

L u(b) = 0.8, Aa) = 0.9, \(b) = 0.3,
,p(b) =04.

Since [y, A] = 0.5 and [A*, p*] = 0.5, we have

LA =(mAow*=05—p
= [\ ] = pt = Cp (X).

Lemma 2.9. Let f : X — Y be a function. Then we have
the following properties.

() f=(k—p)=k— f(p)foreach p e LY.

@) f~(k — A) <k — f~(\) for each A € LX.

3) [f~(A),p] = [N f~(p)] for each A € L and
p€LY.

@) [, ] < [f~ (), £~ (p)] for each v, p € LY. If fis
surjective, the equality holds.

) Mol < [f7(A), f7(w)] foreach A, p € LY. If f
is injective, the equality holds.

Proof. (1) It is obvious.
2

F7 k= X@) = Viesrqupk— N(z)

<k = Ve iy M)

=k—= "N

(3) We have [f (A), p] = [A, £ (p)] from

(£~ (N)s Pl
= Nyey (F~(N() = p(y))

= /\yEY (vmeffl({y}) AMz) — (f(f”)))

= Avey /\mef M) (A 7) = p(f(2)))
= /\zEX ( f(=z ))
=\ (o).

(4) and (5) are similarly proved.
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Example 2.10. Let (L = [0, 1], ®) be an operation & de-

fined as
_J o ifr+y<1,
ﬂE(Dy_{:c/\y z+y>1
_J Q-=x)vy ifz>y,
m—>y—{1 z<uy.

Since © is a left-continuous t-norm, by remark 1.2(2),
(L = [0,1],0) is a stsc-quantale. Let f : N — {y} be
a function and A(n) = 0.3 — L.

= Vpen (03 = A(n))
=V,en(0.7V (03— 1)) =

)=03— \/ A(n

neN

703 = X)(y)

03— f~(M)(y

In general, f~(k — A) £k — f~(X).

Example 2.11. Let (L = [0,1],®) be a stsc-quantale de-
fined as in Example 2.8. Let X = {a,b,c}, Y = {z,y, z}
and f : X — Y be a function defined by

fla)=fb) =z, flc)=y.
Put \,u € LX and v, p € LY as follows:
Ala) = 0.4, AX(b) =0.7, A(c) = 0.3,
p(a) = 0.8, u(b) = 0.5, p(c) = 0.6,
v(z) = 0.5, v(y) =04, v(z) = 0.6,
o(z) = 0.6, p(y) =04, p(z) =0.3.

M [f7N), vl =[N f ()] =038
(2) Since f is not injective, we have 0.8 = [\, pu] <
[N, f~(w] =1

(3) Since f is not surjective, we have 0.7 = [v, p] <

=), =l =1

Theorem 2.12. Let C; be implicative closure operators on
X foreachi € I. Define C = A,_ C; is an implicative
closure operator on X

i€l

Proof. (C1), (C2) and (C4) are easily proved.
(C3)

c(em) =C(/\zer‘ i(N) < Nier Gi(Ci

< Nier Gi(A) = C(N).

Theorem 2.13. Let f : X — Y be a function. For p € LY
and C, € (LY)~", we define an operator £ : (LY)L" —

(LX)L™ as follows:

FECM ) = F(Co(f7 (N)(2).
Then f<=(C,) = C}-(,) is an implicative closure operator
on X.
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Proof. Tt implies

FE(C)N(=)

= [T (Co(F 7 (N)(=)

= f7([f= V), 0] = p)(x)

=[f7(A),p] = p(f(2)) (by Lemma 2.9(2))
= [\ f7(p)] = = (p)(x) (by Lemma 2.9(3))

.,
Pl —

= Cf@(p)()\)(:c).

By Theorem 2.7(1), f<(C,) = Cy—(,) is an implica-
tive closure operator on X.
O

Theorem 2.14. (1) An operator C : LY — LY is an im-
plicative closure operator iff there exists a family {y; | ¢ €
I} such that

CN@) = Al = ().

iel
2In (1), let f : X — Y be a function. Define

f<(C): LY — LY as follows

FE@)p)@) = Ao, f

el

T (ua)] = 7 (i) ()

Then f<(C) is the coarsest implicative closure on X
which f is an C-map.

Proof. (1) (=) Let F = {C(u) | u € LY} be a family.
Since

/\c wer(M Cw)] = Clp) )
< ACN)] = C(M(Y)

=1—C\(y)

=C(\)(y)-

we have CA)(¥) > Acgguer(MCp)] — C(u)(y)-
Conversely, since [A, C(u)] ® A < C(u), we have

e o CA(y) <CNCW] 0N ()
< C(C(p)(y)

< Cu)(y)-

It implies C(N)() < Ac(er (A C(1)] = Cu)(y)).
(=) Put C,,;(A) = ([A, i) — ). By Theorem 2.12,

C(N)(®) = Aicr Cui(M)(y) and C'is is an implicative clo-
sure operator.
(2) Since C(A) = A, Cpu.(A), we have
FENier Cud0) = F~(Nier Cu )57 (p))
= Nier 7 (C)(F7(0)
= /\1€I‘ [f—)(P)a pi) = F (i)
= Nier ([0, F7 (1)) = £ ()

= /\'LGF Cre(ui) (p)-



A function f : (X, f<(C)) — (Y,C) is a C-map

from:
F7U@ON) = (F(Nier Cud)(V)
= fq(/\iel Cf“(m)()‘))
< Nier 7 (Cp=(uy(N)
= Nier ST ()] = £ (1))
= Nier £ ()] = 2 (F (1))
< /\iez([f”(A%m] — )
= o,
If f:(X,C*) — (Y,C) is a C-map, then
) e~ ()
< C* ) < (V)
& C*(N) < fE(O)(N).

Hence f<(C) is the coarsest implicative closure on X
which f is a C-map.
o

Example 2.15. Let L, X, Y, f, \,u € LX andv,p € LY
defined as in Example 2.11. Then

Co NCy(w) = ([w, 0 = p) A ([w, V] = v).

By Theorem 2.14, we obtain

fT(CAC)(N)

= fS(CHN A FE(CLN)

=Cr—(p)(A )Ath(u( )

=M@= ) AN W) = F ().

Since [A, f~(p)] = 0.9 and [\, f (v)] = 0.8, we have
FECoNCYN)(a) =

)
FE(C, AC)N)(B) = (0.9 — 0.6) A
FEC,AC)N) () = (0.9 — 0.4) A

(0.9 — 0.6) A (0.8 — 0.5) = 0.7,

(0.8 — 0.5) = 0.7,
(0.8 — 0.4) = 0.5.
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