Implicative Closure Operators

Yong Chan Kim¹ and Jung Mi Ko²

Department of Mathematics, Kangnung National University, Gangneung, 201-702, Korea

Abstract

In this paper, we investigate the properties of implicative closure operators on the stsc-quantale L. We find implicative closure operators induced by a function.

Key words: stsc-quantales, implicative closure spaces, C-maps

1. Introduction and preliminaries

Closure operators play an important role in topological spaces, lattices, Boolean algebras, convex sets, deductive systems [1-4, 8,12]. Recently, Gerla et al. [3,4] studied fuzzy closure operators as extensions of closure operators. Bělohlávek [2] and Rodriguez et al. [12] introduced fuzzy closure spaces and implicative closure spaces, respectively, as a sense that if λ_1 is almost a subset λ_2 , then the closure of λ_1 is almost a subset of the closure of λ_2 . They have been developed in many view points.

On the other hand, quantales were introduced by Mulvey [10,11] as the non-commutative generalization of the lattice of open sets in topological spaces. Recently, quantales have arisen in an analysis of the semantics of linear logic systems developed by Girard [5], which supports part of foundation of theoretic computer science. Recently, Höhle [7] developed the algebraic structures and many valued topologies in a sense of quantales and cqm-lattices.

In this paper, we investigate the properties of implicative closure operators on the stsc-quantale L. We find implicative closure operators induced by a function. We give their examples.

Definition 1.1. [7, 10,11] A triple (L, \leq, \odot) is called a strictly two-sided, commutative quantale (stsc-quantale, for short) iff it satisfies the following conditions:

(Q1) $L = (L, \leq, \vee, \wedge, 1, 0)$ is a completely distributive lattice where 1 is the universal upper bound and 0 denotes the universal lower bound;

- (Q2) (L, \odot) is a commutative semigroup;
- (Q3) $a = a \odot 1$, for each $a \in L$;
- (Q4) ⊙ is distributive over arbitrary joins, i.e.

$$(\bigvee_{i\in\Gamma}a_i)\odot b=\bigvee_{i\in\Gamma}(a_i\odot b).$$

Remark 1.2. [7](1) A completely distributive lattice is a stsc-quantale. In particular, the unit interval $([0,1], \leq$ $, \vee, \wedge, 0, 1)$ is a stsc-quantale.

- (2) The unit interval with a left-continuous t-norm t, $([0,1], \leq, t)$, is a stsc-quantale.
- (3) Let $(L, <, \odot)$ be a stsc-quantale. For each $x, y \in L$, we define

$$x \to y = \bigvee \{z \in L \mid x \odot z \le y\}.$$

Then it satisfies Galois correspondence, that is,

$$x \odot y \le z \text{ iff } x \le (y \to z).$$

In this paper, we always assume that $(L, \leq, \odot, *)$ is a stsc-quantale with an order-reversing involution* defined by $x^* = x \to 0$.

Lemma 1.3. [7,13] Let (L, \leq, \odot) be a stsc-quantale. For each $x, y, z, x_i, y_i \in L$, we have the following properties.

- (1) If $y \le z$, $(x \odot y) \le (x \odot z)$, $x \to y \le x \to z$ and $z \to x \le y \to x$.
 - (2) $x \odot y \le x \land y \le x \lor y$.

 - $\begin{array}{l} \text{(3) } x \to (\bigwedge_{i \in \Gamma} y_i) = \bigwedge_{i \in \Gamma} (x \to y_i). \\ \text{(4) } (\bigvee_{i \in \Gamma} x_i) \to y = \bigwedge_{i \in \Gamma} (x_i \to y). \end{array}$
 - $(5) x \to (\bigvee_{i \in \Gamma} y_i) \ge \bigvee_{i \in \Gamma} (x \to y_i)$

 - (6) $(\bigwedge_{i \in \Gamma} x_i) \to y \ge \bigvee_{i \in \Gamma} (x_i \to y).$ (7) $(x \odot y) \to z = x \to (y \to z) = y \to (x \to z).$
 - (8) $x \odot (x \rightarrow y) \le y$ and

$$x \to y \le (y \to z) \to (x \to z).$$

- $(9) (x \to y) \odot z \le x \to (y \odot z).$
- $(10) x \to y \le (x \odot z) \to (y \odot z).$
- (11) $x \rightarrow y = 1$ iff $x \le y$.
- (12) $x \to y = y^* \to x^*$.

Definition 1.4. [1,2,8] A function $E: X \times X \rightarrow L$ is called an ①-equivalence relation if it satisfies the following conditions:

- (E1) E(x,x) = 1,
- (E2) E(x, y) = E(y, x),
- (E3) $E(x, y) \odot E(y, z) \le E(x, z)$.

All algebraic operations on L can be extended pointwisely to the set L^X as follows: for all $x \in X$, $\lambda, \mu \in L^X$ and $\alpha \in L$,

(1) $\lambda \leq \mu \text{ iff } \lambda(x) \leq \mu(x)$;

(2) $(\lambda \odot \mu)(x) = \lambda(x) \odot \mu(x)$;

(3) $\overline{1}(x) = 1$, $\overline{\alpha}(x) = \alpha$ and $\overline{0}(x) = 0$;

(4) $(\alpha \to \lambda)(x) = \alpha \to \lambda(x)$ and $(\lambda \to \alpha)(x) =$ $\lambda(x) \to \alpha$:

(5) $(\alpha \odot \lambda)(x) = \alpha \odot \lambda(x)$.

We denote $[\lambda, \mu] = \bigwedge_{x \in X} (\lambda(x) \to \mu(x))$, for $\lambda, \mu \in$ L^X .

2. Implicative closure operators

Definition 2.1. [12] An operator $C: L^X \to L^X$ is called an implicative closure operator on X if it satisfies the following conditions: for each $\alpha \in L$ and $\lambda, \mu \in L^X$,

(C1) $\mu \leq C(\mu)$,

(C2) if $\lambda \leq \mu$, then $C(\lambda) \leq C(\mu)$,

(C3) $C(C(\mu)) \leq C(\mu)$,

(C4) $C(\alpha \odot \mu) \ge \alpha \odot C(\mu)$.

The pair (X, C) is an implicative closure space. Let C_1 and C_2 be implicative closure operators. We say C_1 is coarser than C_2 iff $C_1(\lambda) \leq C_2(\lambda)$ for each $\lambda \in L^X$.

Let (X, C_1) and (Y, C_2) be implicative closure spaces. A function $f: X \to Y$ is called a C-map if $f(C_1(\mu)) \le$ $C_2(f(\mu))$ for each $\mu \in L^X$.

Remark 2.2. We define implicative closure operators $C_1, C_2: L^X \to L^X$ as follows:

$$C_1(\lambda) = \lambda, \ C_2(\lambda) = \overline{1}, \ \forall \lambda \in L^X.$$

If C is an implicative closure operator, then $C_0 \leq C \leq C_1$.

Theorem 2.3. (1) If $C: L^X \to L^X$ satisfies the conditions (C2), then the condition (C4) holds iff C satisfies (C4)* $C(k \to \lambda) \le k \to C(\lambda)$ for $k \in L$ and $\lambda \in L^X$. (2) If $C: L^X \to L^X$ satisfies the conditions (C2) and

(C4), then $[\lambda_1, \lambda_2] \leq [C(\lambda_1), C(\lambda_2)].$

Proof. (1) (\Rightarrow) Since $k \odot (k \rightarrow \lambda) \le \lambda$ from Lemma 1.3(8), by (C2) and (C4), we have

$$\begin{array}{ll} k \odot C(k \to \lambda) & \leq C \Big(k \odot (k \to \lambda) \Big) \\ & \leq C(\lambda). \end{array}$$

It implies $C(k \to \lambda) \le k \to C(\lambda)$.

 (\Leftarrow) Since $\mu \leq k \rightarrow (k \odot \mu)$, we have

$$C(\mu) \le C(k \to (k \odot \mu))$$

 $\le k \to C(k \odot \mu).$

It implies $k \odot C(\lambda) \le k \odot C(\lambda)$.

(2) Since $\lambda_1 \odot [\lambda_1, \lambda_2] \le \lambda_2$, by (C2) and (C4), we

$$[\lambda_1, \lambda_2] \odot C(\lambda_1) \leq C([\lambda_1, \lambda_2] \odot \lambda_1)$$

$$\leq C(\lambda_2).$$

Hence $[\lambda_1, \lambda_2] \leq [C(\lambda_1), C(\lambda_2)].$

Remark 2.4. (1) If $C: L^X \to L^X$ satisfies the conditions (C1), (C2) and (C3), then C is a fuzzy closure operator in Biacino and Gerla's sense [3,4].

(2) If $C: L^X \to L^X$ satisfies the conditions (C1), (C3) and (C2)*,

$$(C2)^* [\lambda_1, \lambda_2] \leq [C(\lambda_1), C(\lambda_2)],$$

then C is a fuzzy closure operator in a Bělohlávek's sense [1,2]. In (C2)*, if $[\lambda_1, \lambda_2]$ = 1 implies $[C(\lambda_1), C(\lambda_2)] = 1$, then the condition (C2) holds. The condition (C2)* is interpreted if λ_1 is almost a subset λ_2 , then the closure of λ_1 is almost a subset of the closure of

(3) If C is an implicative closure operator, by Theorem 2.3(2), then C is a fuzzy closure operator in a Bělohlávek's sense [1,2].

Example 2.5. Let $(L = [0,1], \odot)$ be a stsc-quantale defined by

$$x\odot y=(x+y-1)\vee 0,$$

$$x \rightarrow y = (1 - x + y) \wedge 1.$$

Let $X = \{a, b\}$ and $\mu, \lambda_1, \lambda_2 \in L^X$ as follows:

$$\mu(a) = 0.4, \mu(b) = 0.7, \quad \lambda_1(a) = 0.5, \lambda_1(b) = 0.5, \\ \lambda_2(a) = 0.2, \lambda_2(b) = 0.5.$$

Define $C: L^X \to L^X$ as follows:

$$C(\lambda) = \begin{cases} \mu & \text{if } \lambda \leq \mu, \\ \overline{1} & \text{otherwise.} \end{cases}$$

(1) Since C satisfies the conditions (C1), (C2) and (C3), then C is a fuzzy closure operator in a sense Biacino and Gerla [3,4].

(2) Since $0.7 = [\lambda_1, \lambda_2] \nleq [C(\lambda_1), C(\lambda_2)] = [\overline{1}, \mu] =$ 0.4, C is not a fuzzy closure operator in a Bělohlávek's

(3) Since $\mu = C(0.7 \odot \lambda_1) \geq 0.7 \odot C(\lambda_1) = \overline{0.7}$, C is not an implicative closure operator.

Theorem 2.6. Let $E \in L^{X \times X}$ be an \odot -equivalence relation. Define an operator $C: L^X \to L^X$ as follows:

$$C(\lambda)(x) = \bigvee_{z \in X} (\lambda(z) \odot E(z, x)).$$

Then C is an implicative closure operator on X.

Proof. (C1) It follows from $C(\lambda)(x) \le \lambda(x) \odot E(x,x) = \lambda(x)$.

(C2) and (C4) are easily proved.

(C3) It follows from:

$$\begin{split} &C(C(\lambda))(x) \\ &= \bigvee_{z \in X} (C(\lambda)(z) \odot E(z,x)) \\ &= \bigvee_{z \in X} \Big(\bigvee_{y \in X} (\lambda(y) \odot (E(y,z) \odot E(z,x)) \Big) \\ &= \bigvee_{y \in X} \Big(\lambda(y) \odot \bigvee_{z \in X} (E(y,z) \odot E(z,x))) \Big) \\ &\leq \bigvee_{y \in X} (\lambda(y) \odot E(y,x)) \\ &= C(\lambda)(x). \end{split}$$

Hence C is an implicative closure operator on X.

Theorem 2.7. For $\mu \in L^X$, we define an operator $C_{\mu}: L^X \to L^X$ as follows:

$$C_{\mu}(\lambda)(x) = [\lambda, \mu] \to \mu(x).$$

Then the following properties.

(1) C_{μ} is an implicative closure operator on X.

(2)
$$I_{\mu}(\lambda^*)^* = C_{\mu^*}(\lambda)$$
, where $I_{\mu}(\lambda)(x) = [\mu, \lambda] \odot \mu(y)$ for all $\lambda \in L^X$.

Proof. (1) (C1) Since $\lambda \odot [\lambda, \mu] \le \mu$, then

$$\lambda \leq [\lambda, \mu] \to \mu = C_{\mu}(\lambda).$$

(C2) If
$$\lambda_1 \leq \lambda_2$$
, then $[\lambda_1, \mu] \geq [\lambda_2, \mu]$. So,

$$C_{\mu}(\lambda_1) = [\lambda_1, \mu] \to \mu \le [\lambda_2, \mu] \to \mu = C_{\mu}(\lambda_2).$$

(C3) Since

$$[\lambda, \mu] \to \mu \le [\lambda, \mu] \to \mu$$

 $\Leftrightarrow [\lambda, \mu] \odot ([\lambda, \mu] \to \mu) \le \mu,$

then $[\lambda, \mu] \leq [[\lambda, \mu] \rightarrow \mu, \mu]$. It implies

$$C_{\mu}(C_{\mu}(\lambda)) = [C_{\mu}(\lambda), \mu] \to \mu$$

= $[([\lambda, \mu] \to \mu), \mu] \to \mu$
 $\leq [\lambda, \mu] \to \mu$
= $C_{\mu}(\lambda)$.

(C4) Since $[k\odot\lambda,\mu]=k\to [\lambda,\mu]$ from Lemma 1.3(3)and (7), we have

$$k \odot [k \odot \lambda, \mu] \odot ([\lambda, \mu] \rightarrow \mu)$$

= $k \odot (k \rightarrow [\lambda, \mu]) \odot ([\lambda, \mu] \rightarrow \mu)$
 $\leq [\lambda, \mu]) \odot ([\lambda, \mu] \rightarrow \mu) < \mu.$

It implies

$$k \odot C_{\mu}(\lambda) = k \odot ([\lambda, \mu] \to \mu) \le [k \odot \lambda, \mu] \to \mu$$

= $C_{\mu}(k \odot \lambda)$.

(2) By Lemma 1.3(7) and (12), we have

$$I_{\mu}(\lambda^*)^* = ([\mu, \lambda^*] \odot \mu)^* = [\mu, \lambda^*] \to \mu^*$$

= $[\lambda, \mu^*] \to \mu^* = C_{\mu^*}(\lambda)$.

Example 2.8. Let $(L = [0,1], \odot)$ be a stsc-quantale defined by

$$x \odot y = (x + y - 1) \lor 0$$

$$x \rightarrow y = (1 - x + y) \wedge 1.$$

Let $X = \{a, b\}$ and $\mu, \lambda, \rho \in L^X$ as follows:

$$\mu(a) = 0.5, \mu(b) = 0.8, \quad \lambda(a) = 0.9, \lambda(b) = 0.3,$$

 $\rho(a) = 0.7, \rho(b) = 0.4.$

Since $[\mu, \lambda] = 0.5$ and $[\lambda^*, \mu^*] = 0.5$, we have

$$I_{\mu}(\lambda)^* = ([\mu, \lambda] \odot \mu)^* = 0.5 \rightarrow \mu^*$$

= $[\lambda^*, \mu^*] \rightarrow \mu^* = C_{\mu^*}(\lambda^*).$

Lemma 2.9. Let $f: X \to Y$ be a function. Then we have the following properties.

(1)
$$f^{\leftarrow}(k \to \rho) = k \to f^{\leftarrow}(\rho)$$
 for each $\rho \in L^Y$.

(2)
$$f^{\rightarrow}(k \rightarrow \lambda) \leq k \rightarrow f^{\rightarrow}(\lambda)$$
 for each $\lambda \in L^X$.

(3)
$$[f^{\rightarrow}(\lambda), \rho] = [\lambda, f^{\leftarrow}(\rho)]$$
 for each $\lambda \in L^X$ and $\rho \in L^Y$.

(4) $[\nu, \rho] \leq [f^{\leftarrow}(\nu), f^{\leftarrow}(\rho)]$ for each $\nu, \rho \in L^Y$. If f is surjective, the equality holds.

(5) $[\lambda, \mu] \leq [f^{\rightarrow}(\lambda), f^{\rightarrow}(\mu)]$ for each $\lambda, \mu \in L^Y$. If f is injective, the equality holds.

Proof. (1) It is obvious.

(2)

$$\begin{array}{ll} f^{\rightarrow}(k \rightarrow \lambda)(y) &= \bigvee_{x \in f^{-1}(\{y\})} (k \rightarrow \lambda)(x) \\ &\leq k \rightarrow \bigvee_{x \in f^{-1}(\{y\})} \lambda(x) \\ &= k \rightarrow f^{\rightarrow}(\lambda)(y). \end{array}$$

(3) We have $[f^{\rightarrow}(\lambda), \rho] = [\lambda, f^{\leftarrow}(\rho)]$ from

$$\begin{split} &[f^{\rightarrow}(\lambda),\rho]\\ &= \bigwedge_{y\in Y}(f^{\rightarrow}(\lambda)(y)\to\rho(y))\\ &= \bigwedge_{y\in Y}\left(\bigvee_{x\in f^{-1}(\{y\})}\lambda(x)\to\rho(f(x))\right)\\ &= \bigwedge_{y\in Y}\bigwedge_{x\in f^{-1}(\{y\})}\left(\lambda(x)\to\rho(f(x))\right)\\ &= \bigwedge_{x\in X}\left(\lambda(x)\to\rho(f(x))\right)\\ &= [\lambda,f^{\leftarrow}(\rho)]. \end{split}$$

(4) and (5) are similarly proved.

Example 2.10. Let $(L=[0,1],\odot)$ be an operation \odot defined as

$$x\odot y = \left\{ \begin{array}{ll} 0 & \text{if } x+y \leq 1, \\ x\wedge y & x+y > 1. \end{array} \right.$$

$$x \rightarrow y = \left\{ \begin{array}{ll} (1-x) \vee y & \text{if } x > y, \\ 1 & x \leq y. \end{array} \right.$$

Since \odot is a left-continuous t-norm, by remark 1.2(2), $(L=[0,1],\odot)$ is a stsc-quantale. Let $f:N\to\{y\}$ be a function and $\lambda(n)=0.3-\frac{1}{n}$.

$$\begin{array}{ll} f^{\rightarrow}(0.3\rightarrow\lambda)(y) &=\bigvee_{n\in N}(0.3\rightarrow\lambda(n))\\ &=\bigvee_{n\in N}(0.7\vee(0.3-\frac{1}{n}))=0.7. \end{array}$$

$$0.3 \to f^{\to}(\lambda)(y) = 0.3 \to \bigvee_{n \in N} \lambda(n) = 1.$$

In general, $f^{\rightarrow}(k \rightarrow \lambda) \neq k \rightarrow f^{\rightarrow}(\lambda)$

Example 2.11. Let $(L = [0,1], \odot)$ be a stsc-quantale defined as in Example 2.8. Let $X = \{a,b,c\}$, $Y = \{x,y,z\}$ and $f: X \to Y$ be a function defined by

$$f(a) = f(b) = x, \quad f(c) = y.$$

Put $\lambda, \mu \in L^X$ and $\nu, \rho \in L^Y$ as follows:

$$\lambda(a) = 0.4, \ \lambda(b) = 0.7, \ \lambda(c) = 0.3,$$

$$\mu(a) = 0.8, \ \mu(b) = 0.5, \ \mu(c) = 0.6,$$

$$\nu(x) = 0.5, \ \nu(y) = 0.4, \ \nu(z) = 0.6,$$

$$\rho(x) = 0.6, \rho(y) = 0.4, \ \rho(z) = 0.3.$$

- (1) $[f^{\rightarrow}(\lambda), \nu] = [\lambda, f^{\leftarrow}(\nu)] = 0.8$. (2) Since f is not injective, we have $0.8 = [\lambda, \mu] < 0.8$
- (2) Since f is not injective, we have $0.8 = [\lambda, \mu] < [f^{\rightarrow}(\lambda), f^{\rightarrow}(\mu)] = 1$.
- (3) Since f is not surjective, we have $0.7 = [\nu, \rho] < [f^{\leftarrow}(\nu), f^{\leftarrow}(\rho)] = 1$.

Theorem 2.12. Let C_i be implicative closure operators on X for each $i \in \Gamma$. Define $C = \bigwedge_{i \in \Gamma} C_i$ is an implicative closure operator on X

Proof. (C1), (C2) and (C4) are easily proved. (C3)

$$\begin{array}{ll} C(C(\lambda)) & = C(\bigwedge_{i \in \Gamma} C_i(\lambda)) \leq \bigwedge_{i \in \Gamma} C_i(C_i(\lambda)) \\ & \leq \bigwedge_{i \in \Gamma} C_i(\lambda) = C(\lambda). \end{array}$$

Theorem 2.13. Let $f: X \to Y$ be a function. For $\rho \in L^Y$ and $C_{\rho} \in (L^Y)^{L^Y}$, we define an operator $f^{\Leftarrow}: (L^Y)^{L^Y} \to (L^X)^{L^X}$ as follows:

$$f^{\leftarrow}(C_{\rho})(\lambda)(x) = f^{\leftarrow}(C_{\rho}(f^{\rightarrow}(\lambda))(x).$$

Then $f^{\leftarrow}(C_{\rho}) = C_{f^{\leftarrow}(\rho)}$ is an implicative closure operator on X.

Proof. It implies

$$\begin{split} &f^{\leftarrow}(C_{\rho})(\lambda)(x)\\ &=f^{\leftarrow}(C_{\rho}(f^{\rightarrow}(\lambda))(x)\\ &=f^{\leftarrow}([f^{\rightarrow}(\lambda),\rho]\to\rho)(x)\\ &=[f^{\rightarrow}(\lambda),\rho]\to\rho(f(x))\text{ (by Lemma 2.9(2))}\\ &=[\lambda,f^{\leftarrow}(\rho)]\to f^{\leftarrow}(\rho)(x)\text{ (by Lemma 2.9(3))}\\ &=C_{f^{\leftarrow}(\rho)}(\lambda)(x). \end{split}$$

By Theorem 2.7(1), $f^{\leftarrow}(C_{\rho}) = C_{f^{\leftarrow}(\rho)}$ is an implicative closure operator on X.

Theorem 2.14. (1) An operator $C: L^Y \to L^Y$ is an implicative closure operator iff there exists a family $\{\mu_i \mid i \in I\}$ such that

$$C(\lambda)(y) = \bigwedge_{i \in I} ([\lambda, \mu_i] \to \mu_i(y)).$$

(2)In (1), let $f:X\to Y$ be a function. Define $f^{\Leftarrow}(C):L^Y\to L^Y$ as follows

$$f^{\leftarrow}(C)(\rho)(x) = \bigwedge_{i \in I} ([\rho, f^{\leftarrow}(\mu_i)] \to f^{\leftarrow}(\mu_i)(x)).$$

Then $f \in (C)$ is the coarsest implicative closure on X which f is an C-map.

Proof. (1) (\Rightarrow) Let $F = \{C(\mu) \mid \mu \in L^Y\}$ be a family. Since

$$\bigwedge_{C(\mu) \in F} ([\lambda, C(\mu)] \to C(\mu)(y))$$

$$\leq [\lambda, C(\lambda)] \to C(\lambda)(y)$$

$$= 1 \to C(\lambda)(y)$$

$$= C(\lambda)(y).$$

we have $C(\lambda)(y) \ge \bigwedge_{C(\mu) \in F} ([\lambda, C(\mu)] \to C(\mu)(y))$. Conversely, since $[\lambda, C(\mu)] \odot \lambda \le C(\mu)$, we have

$$\begin{array}{ll} [\lambda,C(\mu)]\odot C(\lambda)(y) & \leq C([\lambda,C(\mu)]\odot\lambda)(y) \\ & \leq C(C(\mu))(y) \\ & \leq C(\mu)(y). \end{array}$$

It implies $C(\lambda)(y) \leq \bigwedge_{C(\mu) \in F}([\lambda, C(\mu)] \to C(\mu)(y))$. (\Rightarrow) Put $C_{\mu_i}(\lambda) = ([\lambda, \mu_i] \to \mu_i)$. By Theorem 2.12, $C(\lambda)(y) = \bigwedge_{i \in I} C_{\mu_i}(\lambda)(y)$ and C is is an implicative closure operator.

(2) Since
$$C(\lambda) = \bigwedge_{i \in \Gamma} C_{\mu_i}(\lambda)$$
, we have

$$f^{\leftarrow}(\bigwedge_{i\in\Gamma}C_{\mu_{i}})(\rho) = f^{\leftarrow}(\bigwedge_{i\in\Gamma}C_{\mu_{i}})(f^{\rightarrow}(\rho))$$

$$= \bigwedge_{i\in\Gamma}f^{\leftarrow}(C_{\mu_{i}})(f^{\rightarrow}(\rho))$$

$$= \bigwedge_{i\in\Gamma}\left([f^{\rightarrow}(\rho),\mu_{i}] \to f^{\leftarrow}(\mu_{i})\right)$$

$$= \bigwedge_{i\in\Gamma}\left([\rho,f^{\leftarrow}(\mu_{i})] \to f^{\leftarrow}(\mu_{i})\right)$$

$$= \bigwedge_{i\in\Gamma}C_{f^{\leftarrow}(\mu_{i})}(\rho).$$

A function $f:(X,f^{\Leftarrow}(C))\to (Y,C)$ is a C-map from:

$$f^{\rightarrow}(f^{\Leftarrow}(C)(\lambda)) = f^{\rightarrow}(f^{\Leftarrow}(\bigwedge_{i \in I} C_{\mu_i})(\lambda))$$

$$= f^{\rightarrow}(\bigwedge_{i \in I} C_{f^{\leftarrow}(\mu_i)}(\lambda))$$

$$\leq \bigwedge_{i \in I} f^{\rightarrow}(C_{f^{\leftarrow}(\mu_i)}(\lambda))$$

$$= \bigwedge_{i \in I} f^{\rightarrow}([\lambda, f^{\leftarrow}(\mu_i)] \rightarrow f^{\leftarrow}(\mu_i))$$

$$= \bigwedge_{i \in I}[\lambda, f^{\leftarrow}(\mu_i)] \rightarrow f^{\rightarrow}(f^{\leftarrow}(\mu_i))$$

$$\leq \bigwedge_{i \in I}([f^{\rightarrow}(\lambda), \mu_i] \rightarrow \mu_i)$$

$$= C(f^{\rightarrow}(\lambda)).$$

If
$$f:(X,C^*)\to (Y,C)$$
 is a C-map, then

$$\begin{split} f^{\rightarrow}(C^*(\lambda)) &\leq C(f^{\rightarrow}(\lambda)) \\ \Leftrightarrow C^*(\lambda) &\leq f^{\leftarrow}(C(f^{\rightarrow}(\lambda))) \\ \Leftrightarrow C^*(\lambda) &\leq f^{\leftarrow}(C)(\lambda). \end{split}$$

Hence $f^{\Leftarrow}(C)$ is the coarsest implicative closure on X which f is a C-map.

Example 2.15. Let $L, X, Y, f, \lambda, \mu \in L^X$ and $\nu, \rho \in L^Y$ defined as in Example 2.11. Then

$$C_{\rho} \wedge C_{\nu}(\omega) = ([\omega, \rho] \to \rho) \wedge ([\omega, \nu] \to \nu).$$

By Theorem 2.14, we obtain

$$f^{\Leftarrow}(C_{\rho} \wedge C_{\nu})(\lambda)$$

$$= f^{\Leftarrow}(C_{\rho})(\lambda) \wedge f^{\Leftarrow}(C_{\nu})(\lambda)$$

$$= C_{f^{\leftarrow}(\rho)}(\lambda) \wedge C_{f^{\leftarrow}(\nu)}(\lambda)$$

$$= ([\lambda, f^{\leftarrow}(\rho)] \to f^{\leftarrow}(\rho)) \wedge ([\lambda, f^{\leftarrow}(\nu)] \to f^{\leftarrow}(\nu)).$$

Since $[\lambda, f^{\leftarrow}(\rho)] = 0.9$ and $[\lambda, f^{\leftarrow}(\nu)] = 0.8$, we have

$$f^{\Leftarrow}(C_{\rho} \wedge C_{\nu})(\lambda)(a) = (0.9 \to 0.6) \wedge (0.8 \to 0.5) = 0.7,$$

$$f^{\Leftarrow}(C_{\rho} \wedge C_{\nu})(\lambda)(b) = (0.9 \to 0.6) \wedge (0.8 \to 0.5) = 0.7,$$

$$f^{\Leftarrow}(C_{\rho} \wedge C_{\nu})(\lambda)(c) = (0.9 \to 0.4) \wedge (0.8 \to 0.4) = 0.5.$$

Referdnces

- [1] R. Bělohlávek, Similarity relations in concept lattices, J. Logic and Computation 10 (6) (2000) 823-845.
- [2] R. Bělohlávek, *Fuzzy closure operators*, J. Math. Anal. 267 (2001) 473-489.
- [3] L. Biacino and G. Gerla, Closure systems and L-subalgebras, Inform. Sci. 33 (1994) 181-195.
- [4] L. Biacino and G. Gerla, An extension principle for closure operators, J. Math. Anal. 198 (1996) 1-24.

- [5] J.Y. Girard, *Linear logic*, Theoret. Comp. Sci. 50, 1987, 1-102.
- [6] P. Hájek, *Metamathematices of Fuzzy Logic*, Kluwer Academic Publishers, Dordrecht (1998).
- [7] U. Höhle, S. E. Rodabaugh, *Mathematics of Fuzzy Sets, Logic, Topology and Measure Theory,* The Handbooks of Fuzzy Sets Series, Volume 3, Kluwer Academic Publishers, Dordrecht (1999).
- [8] J. Jacas, J. Recasens, Fuzzy T-transitive relations: eigenvectors and generators, Fuzzy Sets and Systems 72 (1995) 147-154.
- [9] Liu Ying-Ming, *Projective and injective objects in the category of quantales*, J. of Pure and Applied Algebra, 176, 2002, 249-258.
- [10] C.J. Mulvey, Quantales, Suppl. Rend. Cric. Mat. Palermo Ser.II 12,1986,99-104.
- [11] C.J. Mulvey, J.W. Pelletier, On the quantisation of point, J. of Pure and Applied Algebra, 159, 2001, 231-295.
- [12] R.O. Rodriguez, F. Esteva, P. Garcia, L. Godo, On implicative closure operators in approximate reasioning, Internat. J. Approx. Reason. 33 (2003) 159-184.
- [13] E. Turunen, *Mathematics Behind Fuzzy Logic*, A Springer-Verlag Co., 1999.

Yong Chan Kim

He received the M.S and Ph.D. degrees in Department of Mathematics from Yonsei University, in 1984 and 1991, respectively. From 1991 to present, he is a professor in Department of Mathematics, Kangnung University. His research interests are fuzzy logic and fuzzy topology.

Jung Mi Ko

She received the M.S and Ph.D. degrees in Department of Mathematics from Yonsei University, in 1983 and 1988, respectively. From 1988 to present, she is a professor in Department of Mathematics, Kangnung University. Her research interests are fuzzy logic.