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A NOTE OF LITTLEWOOD-PALEY FUNCTIONS ON

TRIEBEL-LIZORKIN SPACES

Feng Liu

Abstract. In this note we prove that several classes of Littlewood-

Paley square operators defined by the kernels without any regularity are
bounded on Triebel-Lizorkin spaces F p,qα (Rn) and Besov spaces Bp,qα (Rn)

for 0 < α < 1 and 1 < p, q <∞.

1. Introduction

It is well known that the theory of the Littlewood-Paley functions has been
an important part of harmonic analysis. One can consult [13–15] for its history
and significance. The Lp mapping properties for these operators have also been
studied extensively by many authors (see [3–8, 11, 12, 19] for example). In this
note we shall prove the boundedness of the Littlewood-Paley square functions
on Triebel-Lizorkin spaces and Besov spaces. Let ψ ∈ L1(Rn) and satisfy∫

Rn
ψ(x)dx = 0.

We consider a square function of Littlewood-Paley type

gψ(f)(x) =
(∫ ∞

0

|ψt ∗ f(x)|2 dt
t

)1/2

,

where ψt(x) = t−nψ(t−1x).
A well-known result for gψ proved by Benedek, Calderón and Panzone [2] is

the following:

Theorem A. Suppose that ψ satisfies

|ψ(x)| ≤ C(1 + |x|)−n−ε for some ε > 0,
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Rn
|ψ(x− y)− ψ(x)|dx ≤ C|y|ε for some ε > 0.

Then gψ is bounded on Lp(Rn) for all 1 < p <∞.

Later on, Fan and Sato [8] relaxed the conditions imposed on ψ in Theorem
A and proved the following result.

Theorem B. Suppose that the function ψ satisfies the following conditions:
(i)
∫
|x|≥1

|ψ(x)||x|εdx <∞ for some ε > 0;

(ii)
( ∫
|x|<1

|ψ(x)|udx
)1/u

<∞ for some u > 1;

(iii) |ψ(x)| ≤ h(x)Ω(x′) for all x ∈ Rn\{0}, where x′ = x/|x|, for some
non-negative function h on (0,∞) and Ω on Sn−1 (the unit sphere in Rn) such
that

(a) h(r) is non-increasing on (0,∞) and h(|x|) ∈ L1(Rn),
(b) Ω ∈ Ls(Sn−1) for some 1 < s ≤ ∞.

Then gψ is bounded on Lp(Rn) for all 1 < p <∞.

Recently, Sato [12] used a minimum condition on ψ to obtain the following
result.

Theorem C. Suppose that |ψ(x)| ≤ h(x)Ω(x′) for all x ∈ Rn\{0}, where h
is a non-negative, non-increasing function on (0,∞) with supported in (0, 1]
and Ω is a non-negative function on Sn−1. We assume that h(|x|) ∈ L1(Rn),
Ω ∈ L1(Sn−1) and ψ ∈ Ls(Rn) for some 1 < s ≤ ∞. Put mψ(x) = h(|x|)Ω(x′).
Then

‖gψ(f)‖Lp(Rn) ≤ Cp(s/(s− 1))1/2(‖ψ‖Lq(Rn) + ‖mψ‖L1(Rn))‖f‖Lp(Rn)

for all 1 < p <∞, where the constant Cp > 0 is independent of s, ψ, h, Ω.

By extrapolation, Theorem C yields a more general result.

Theorem D. Suppose that |ψ(x)| ≤ h(|x|)Ω(x′) for all x ∈ Rn\{0}, where h
is a non-negative, non-increasing function on (0,∞) with supported in (0, 1]
and Ω is a non-negative function on Sn−1. We further assume that Ω ∈
L(log+ L)1/2(Sn−1) and h(|x|) ∈ Ls(Rn) for some 1 < s ≤ ∞. Then gψ is
bounded on Lp(Rn) for all 1 < p <∞.

Here L(log+ L)β(Sn−1) for β > 0 denotes the class of all functions Ω on Sn−1

satisfying

‖Ω‖L(log+ L)α(Sn−1) :=

∫
Sn−1

|Ω(θ)|(log(2 + |Ω(θ)|))αdσ(θ) <∞,

where dσ denotes the Lebesgue surface measure on Sn−1. Clearly, for any
α > β > 0 and 1 < q ≤ ∞,

Lq(Sn−1) ( L(log+ L)α(Sn−1) ( L(log+ L)β(Sn−1) ( L1(Sn−1).

In this paper we focus on the boundedness of the Littlewood-Paley function
gψ on Triebel-Lizorkin spaces. It is well known that the Triebel-Lizorkin spaces
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and Besov spaces contain many important function spaces, such as Lebesgue
spaces, Hardy spaces, Sobolev spaces and Lipschitz spaces. Let us recall some
definitions. For α ∈ R and 0 < p, q ≤ ∞ (p 6=∞), we define the homogeneous

Triebel-Lizorkin spaces Ḟ p,qα (Rn) and homogeneous Besov spaces Ḃp,qα (Rn) by
(1.1)

Ḟ p,qα (Rn) :=
{
f ∈ S ′(Rn) : ‖f‖Ḟp,qα (Rn) =

∥∥∥(∑
i∈Z

2−iαq|Ψi ∗ f |q
)1/q∥∥∥

Lp(Rn)
<∞

}
;

(1.2)

Ḃp,qα (Rn) :=
{
f ∈ S ′(Rn) : ‖f‖Ḃp,qα (Rn) =

(∑
i∈Z

2−iαq‖Ψi ∗ f‖qLp(Rn)

)1/q

<∞
}
,

where S ′(Rn) is the tempered distribution class on Rn, Ψ̂i(ξ) = φ(2iξ) for i ∈ Z
and φ ∈ C∞c (Rn) satisfies the conditions:

(i) 0 ≤ φ(x) ≤ 1;
(ii) supp(φ) ⊂ {x ∈ Rn : 1/2 ≤ |x| ≤ 2};
(iii) φ(x) > c > 0 if 3/5 ≤ |x| ≤ 5/3.
The inhomogeneous versions of Triebel-Lizorkin spaces and Besov spaces,

which are denoted by F p,qα (Rn) and Bp,qα (Rn), respectively, are obtained by
adding the term ‖Θ ∗ f‖Lp(Rn) to the right hand side of (1.1) or (1.2) with∑
i∈Z replaced by

∑
i≥1, where Θ ∈ S(Rn) (the Schwartz class), supp(Θ̂) ⊂

{ξ ∈ Rn : |ξ| ≤ 2}, Θ̂(x) > c > 0 if |x| ≤ 5/3. The following properties are
well known (see [9, 16] for example):

(1.3) Ḟ p,20 (Rn) = Lp(Rn) for 1 < p <∞;

(1.4) Ḟ p,pα (Rn) = Ḃp,pα (Rn) for α ∈ R and 1 < p <∞;

(1.5)
F p,qα (Rn) ∼ Ḟ p,qα (Rn) ∩ Lp(Rn) and

‖f‖Fp,qα (Rn) ∼ ‖f‖Ḟp,qα (Rn) + ‖f‖Lp(Rn) (α > 0);

(1.6)
Bp,qα (Rn) ∼ Ḃp,qα (Rn) ∩ Lp(Rn) and

‖f‖Bp,qα (Rn) ∼ ‖f‖Ḃp,qα (Rn) + ‖f‖Lp(Rn) (α > 0).

In 2009, Zhang and Chen [20] proved the following result.

Theorem E. Let Ω ∈ H1(Sn−1) satisfying
∫

Sn−1 Ω(x′)dσ(x′) = 0 and ψ(x) =

h(|x|)Ω(x′). Suppose that there exist ε, γ, C > 0 such that |h(t)| ≤ Ct−n+ε(1+
t)−2ε and ∫

R
|(t+ r)n−1h(t+ r)− tn−1h(t)|dt ≤ C|r|γ .

Then gψ is bounded on F p,qα (Rn) for all 0 < α < 1 and 1 < p, q <∞.
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Here H1(Sn−1) denotes the Hardy space on Sn−1, which is the set of all
L1(Sn−1) functions Ω satisfying

‖Ω‖H1(Sn−1) :=

∫
Sn−1

sup
0≤r<1

∣∣∣ ∫
Sn−1

Ω(θ)
1− r2

|rw − θ|n
dσ(θ)

∣∣∣dσ(w) <∞.

It was known that

H1(Sn−1) * L(log+ L)β(Sn−1) * H1(Sn−1) for any 0 < β < 1.

It follows from Theorems B-D and (1.3) that the operator gψ is bounded

on Ḟ p,20 (Rn) for all 1 < p < ∞ under the same assumptions on ψ as in one of
Theorems B-D. A natural question is the following:

Question F. Is the operator gψ bounded on Ḟ p,qα (Rn) for some α 6= 0 and
q 6= 2 under the same assumptions on ψ as in one of Theorems B-D?

Question F is the main motivation for this work. This problem will be
addressed by our main result.

Theorem 1.1. (i) Suppose that ψ satisfies the condition of Theorem B. Then

‖gψ(f)‖Ḟp,qα (Rn) ≤ C‖f‖Ḟp,qα (Rn)

for all 0 < α < 1 and 1 < p, q < ∞, where the constant C > 0 depends on
s, ψ, h, Ω.

(ii) Suppose that ψ satisfies the condition of Theorem C. Then

‖gψ(f)‖Ḟp,qα (Rn) ≤ C(s/(s− 1))1/2(‖ψ‖Ls(Rn) + ‖mψ‖L1(Rn))‖f‖Ḟp,qα (Rn)

for all 0 < α < 1 and 1 < p, q < ∞, where the constant C > 0 is independent
of s, ψ, h, Ω.

Actually, Theorem 1.1 will be derived from the following more abstract one.

Theorem 1.2. Let A > 0 and v ≥ 1. Suppose that ψ satisfies the following
conditions:

(i) there exist ε, δ > 0 and C > 0 independent of A, v such that

(1.7)

∫ 2(k+1)v

2kv
|ψ̂(tξ)|2 dt

t
≤ CA2vmin(1, |2kvξ|ε/v, |2kvξ|−δ/v)

for all k ∈ Z and ξ ∈ Rn;
(ii) there exists a constant C > 0 independent of A, v such that∥∥∥(∑

l∈Z

∥∥∥ sup
t>0

∣∣|ψt| ∗ gl,ζ∣∣∥∥∥q
Lr(Rn)

)1/q∥∥∥
Lp(Rn)

(1.8)

≤ CA
∥∥∥(∑

l∈Z
‖gl,ζ‖qLr(Rn)

)1/q∥∥∥
Lp(Rn)

for all 1 < p, q, r <∞, where Rn = {ζ ∈ Rn; 1/2 < |ζ| ≤ 1}.
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Then for all 0 < α < 1 and 1 < p, q < ∞, there exists a constant C > 0
independent of A, v such that

‖gψ(f)‖Ḟp,qα (Rn) ≤ CAv
1/2‖f‖Ḟp,qα (Rn).

Applying Theorem 1.1, Theorems B-C and (1.5), we can get the following
result immediately.

Theorem 1.3. (i) Suppose that ψ satisfies the condition of Theorem B. Then

‖gψ(f)‖Fp,qα (Rn) ≤ C‖f‖Fp,qα (Rn)

for all 0 < α < 1 and 1 < p, q < ∞, where the constant C depends on
s, ψ, h, Ω.

(ii) Suppose that ψ satisfies the condition of Theorem C. Then

‖gψ(f)‖Fp,qα (Rn) ≤ C(s/(s− 1))1/2(‖ψ‖Ls(Rn) + ‖mψ‖L1(Rn))‖f‖Fp,qα (Rn)

for all 0 < α < 1 and 1 < p, q < ∞, where the constant C is independent of
s, ψ, h, Ω.

By (ii) of Theorems 1.1 and 1.3 and applying extrapolation argument, we
can prove the following result.

Corollary 1.1. Let Ω ∈ L(log+ L)1/2(Sn−1) and Ω ≥ 0. Suppose that |ψ(x)| ≤
h(|x|)Ω(x′) for all x ∈ Rn\{0}, where h is a non-negative, non-increasing
function on (0,∞) with supported in (0, 1] and h(|x|) ∈ L2(Rn). Then gψ is

bounded on Ḟ p,qα (Rn) and F p,qα (Rn) for all 0 < α < 1 and 1 < p, q < ∞.
Moreover,

‖gψf‖Ḟp,qα (Rn) ≤ C‖H‖L2(Rn)(1 + ‖Ω‖L(log+ L)1/2(Sn−1))‖f‖Ḟp,qα (Rn)

for all 0 < α < 1 and 1 < p, q < ∞, where H(x) = h(|x|) and the constant C
is independent of ψ, h, Ω.

In particular, when ψ(x) = Ω(x′)|x|ρ−nχ{|x|<1} with ρ > 0, Ω ∈ L1(Sn−1)

and
∫

Sn−1 Ω(x′)dσ(x′) = 0, the Littlewood-Paley operator gψ reduces to the
classical parametric Marcinkiewicz integral operator µρΩ. As an application of
Corollary 1.1, we have:

Corollary 1.2. Let ρ>0, Ω∈L(log+ L)1/2(Sn−1) and satisfy
∫

Sn−1 Ω(x′)dσ(x′)

= 0. Then µρΩ is bounded on Ḟ p,qα (Rn) and F p,qα (Rn) for all 0 < α < 1 and
1 < p, q <∞.

Observing that

(1.9) |∆ζ(gψ(f))(x)| ≤ gψ(∆ζ(f))(x)

for all x, ζ ∈ Rn, where ∆ζ(f) denotes the difference of f , i.e., ∆ζ(f)(x) =
f(x + ζ) − f(x) for all x, ζ ∈ Rn. By (1.9) and (ii) of Lemma 2.1, the Lp

boundedness of gψ automatically implies its boundedness on Ḃp,qα (Rn). This
together with Theorems B-D and (1.6) yields the following result immediately.
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Theorem 1.4. Under the same conditions of Theorem 1.1 and Corollaries 1.1-
1.2, the operator gψ is bounded on Ḃp,qα (Rn) and Bp,qα (Rn) for all 0 < α < 1
and 1 < p, q <∞.

The rest of this paper is organized as follows. After presenting some auxiliary
lemmas following from [18], we shall prove Theorems 1.1-1.2 and Corollary 1.1
in Section 3. We would like to remark that the main method employed in
this paper is a combination of ideas and arguments from [1], [11], [12], [18],
among others. Compare our main results with Theorem E, our main results
and proofs are greatly different from Theorem E and its proof. In [20] the
proof of Theorem E relies heavily on BCP’s method developed in [10] and the
rotation method developed in [17], but the above methods do not work for our
main results.

Throughout the paper, we denote p′ by the conjugate index of p, which sat-
isfies 1/p + 1/p′ = 1. The letter C or c, sometimes with certain parameters,
will stand for positive constants not necessarily the same one at each occur-
rence, but are independent of the essential variables. In what follows, we set
Rn = {ζ ∈ Rn; 1/2 < |ζ| ≤ 1}.

2. Preliminary lemmas

To prove our main results, we need some useful characterizations of Triebel-
Lizorkin spaces and Besov spaces, which are followed from [18].

Lemma 2.1. (i) Let 0 < α < 1, 1 < p <∞, 1 < q ≤ ∞ and 1 ≤ r < min(p, q).
Then

‖f‖Ḟp,qα (Rn) ∼
∥∥∥(∑

l∈Z
2lqα

(∫
Rn

|∆2−lζ(f)|rdζ
)q/r)1/q∥∥∥

Lp(Rn)
.

(ii) Let 1 ≤ p <∞, 1 ≤ q ≤ ∞ and 1 ≤ r ≤ p. Then

‖f‖Ḃp,qα (Rn) ∼
(∑
l∈Z

2lqα
∥∥∥(∫

Rn

|∆2−lζ(f)|rdζ
)1/r∥∥∥q

Lp(Rn)

)1/q

.

The result for the following vector-valued inequalities of the Hardy-Littlewood
maximal functions followed from [18] will also be needed.

Lemma 2.2. Let y′ ∈ Sn−1 and My′ be the directional Hardy-Littlewood max-
imal function along θ defined by

My′(f)(x) = sup
r>0

1

2r

∫
|t|<r

|f(x− ty′)|dt.

Then∥∥∥(∑
j∈Z
‖My′(fj,ζ)‖qLr(Rn)

)1/q∥∥∥
Lp(Rn)

≤ C
∥∥∥(∑

j∈Z
‖fj,ζ‖qLr(Rn)

)1/q∥∥∥
Lp(Rn)

for all 1 < p, q, r <∞, where C > 0 is independent of y′.
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3. Proofs of main results

This section is devoted to proving our main results. Let us begin with the
proof of Theorem 1.2.

Proof of Theorem 1.2. By (1.9) and (i) of Lemma 2.1, we have

(3.1)

‖gψ(f)‖Ḟp,qα (Rn)

≤ C
∥∥∥(∑

l∈Z
2lqα

(∫
Rn

|∆2−lζ(gψ(f))|dζ
)q)1/q∥∥∥

Lp(Rn)

≤ C
∥∥∥(∑

l∈Z
2lqα

(∫
Rn

|gψ(∆2−lζ(f))|dζ
)q)1/q∥∥∥

Lp(Rn)

≤ C
∥∥∥(∑

l∈Z
2lqα

(∫
Rn

(∫ ∞
0

|ψt ∗∆2−lζ(f)|2 dt
t

)1/2

dζ
)q)1/q∥∥∥

Lp(Rn)

for all 0 < α < 1 and 1 < p, q < ∞. Therefore, to prove Theorem 1.2, it
suffices to show that there exists a constant C > 0 independent of A and v
such that

(3.2)

∥∥∥(∑
l∈Z

2lqα
(∫

Rn

(∫ ∞
0

|ψt ∗∆2−lζf |2
dt

t

)1/2

dζ
)q)1/q∥∥∥

Lp(Rn)

≤ CAv1/2‖f‖Ḟp,qα (Rn)

for all 0 < α < 1 and 1 < p, q <∞.
Let η0 ∈ C∞(R) be an even function satisfying 0 ≤ η0(t) ≤ 1, η0(0) = 1 and

η0(t) = 0 for |t| ≥ 1. Set η(ξ) = 1 for |ξ| ≤ 1, η(ξ) = η0( |ξ|−1
2v−1 ), where a > 1.

Then, η satisfies χ{|ξ|≤1}(ξ) ≤ η(ξ) ≤ χ{|ξ|≤2v}(ξ) and |∂αη(ξ)| ≤ cα(2v−1)−|α|

for ξ ∈ Rn and α ∈ Nn, where cα is independent of v. We define the sequence
of functions {φk}k∈Z on Rn by

φk(ξ) = η(2−(k+1)vξ)− η(2−kvξ), ξ ∈ Rn.

Observing that supp(φk) ⊂ {2kv ≤ |ξ| ≤ 2(k+2)v}, supp(φk)∩ supp(φj) = ∅ for
|j− k| ≥ 2 and

∑
k∈Z φk(ξ) = 1 for ξ ∈ Rn\{0}. Define the multiplier operator

Γk on Rn by

Γ̂kf(ξ) = φk(|ξ|)f̂(ξ).

It follows from [18, Lemma 2.5] that for 1 < p, q, r <∞, there exists a constant
C > 0 independent of v such that

(3.3)

∥∥∥(∑
j∈Z

∥∥∥(∑
k∈Z
|Γkfj,ζ |2

)1/2∥∥∥q
Lr(Rn)

)1/q∥∥∥
Lp(Rn)

≤ C
( 2v

2v − 1

)n+2∥∥∥(∑
j∈Z
‖fj,ζ‖qLr(Rn)

)1/q∥∥∥
Lp(Rn)

.
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By Minkowski’s inequality, it follows that for all 0 < α < 1 and 1 < p, q <∞,
(3.4)∥∥∥(∑

l∈Z
2lqα

(∫
Rn

(∫ ∞
0

|ψt ∗∆2−lζ(f)|2 dt
t

)1/2

dζ
)q)1/q∥∥∥

Lp(Rn)

=
∥∥∥(∑

l∈Z
2lqα

(∫
Rn

(∑
k∈Z

∫ 2(k+1)v

2kv

∣∣∣ψt ∗∑
j∈Z

Γj−k∆2−lζ(f)
∣∣∣2 dt
t

)1/2

dζ
)q)1/q∥∥∥

Lp(Rn)

≤
∑
j∈Z

∥∥∥(∑
l∈Z

2lqα
(∫

Rn

(∑
k∈Z

∫ 2(k+1)v

2kv
|ψt ∗ Γj−k∆2−lζ(f)|2 dt

t

)1/2

dζ
)q)1/q∥∥∥

Lp(Rn)
.

Define the mixed norm ‖·‖Eαp,q for measurable functions on Rn×Rn×Z×Z×R+

by

‖g‖Eαp,q :=
∥∥∥(∑

l∈Z
2lqα

(∫
Rn

(∑
k∈Z

∫ ∞
0

|g(t, x, ζ, l, k)|2 dt
t

)1/2

dζ
)q)1/q∥∥∥

Lp(Rn)
.

For any j ∈ Z, let

Aj(f)(t, x, ζ, l, k) := ψt ∗ Γj−k∆2−lζ(f)(x)χ[2kv,2(k+1)v](t).

Thus, we have
(3.5)∥∥∥(∑

l∈Z
2lqα

(∫
Rn

(∫ ∞
0

|ψt ∗∆2−lζ(f)|2 dt
t

)1/2

dζ
)q)1/q∥∥∥

Lp(Rn)
≤
∑
j∈Z
‖Aj(f)‖Eαp,q

for all 0 < α < 1 and 1 < p, q <∞.
By our assumption (1.7), (ii) of Lemma 2.1, Hölder’s inequality, Minkowski’s

inequality, Fubini’s theorem and Plancherel’s theorem, it yields that
(3.6)
‖Aj(f)‖2Eα2,2

=
∥∥∥(∑

l∈Z
22lα

(∫
Rn

(∑
k∈Z

∫ 2(k+1)v

2kv
|ψt ∗ Γj−k∆2−lζ(f)|2 dt

t

)1/2

dζ
)2)1/2∥∥∥2

L2(Rn)

=

∫
Rn

∑
l∈Z

22lα
(∫

Rn

(∑
k∈Z

∫ 2(k+1)v

2kv
|ψt ∗ Γj−k∆2−lζ(f)(x)|2 dt

t

)1/2

dζ
)2

dx

≤ C
∑
l∈Z

22lα

∫
Rn

∑
k∈Z

∫ 2(k+1)v

2kv

∫
Rn
|ψt ∗ Γj−k∆2−lζ(f)(x)|2dxdt

t
dζ

≤ C
∑
l∈Z

22lα

∫
Rn

∑
k∈Z

∫
Ej−k

∫ 2(k+1)v

2kv
|ψ̂(tx)|2 dt

t
| ̂∆2−lζ(f)(x)|2dxdζ

≤ CA2v2−c|j|
∑
l∈Z

2lqα
∥∥∥(∫

Rn

|∆2−lζ(f)|2dζ
)1/2∥∥∥2

L2(Rn)

≤ CA2v2−c|j|‖f‖2
Ḃ2,2
α (Rn)

,



A NOTE OF LITTLEWOOD-PALEY FUNCTIONS 667

where Ej−k = {x ∈ Rn : 2(j−k)v ≤ |x| ≤ 2(j−k+2)v} and c = min(ε, δ). Here
the constant C > 0 is independent of A and v. (3.6) together with (1.4) yields

(3.7) ‖Aj(f)‖Eα2,2 ≤ CAv
1/22−c|j|/2‖f‖Ḟ 2,2

α (Rn).

On the other hand, by our assumption (1.8) we have

(3.8)

∥∥∥(∑
l∈Z

∥∥∥ sup
k∈Z

sup
t∈[1,2v ]

|ψ2kvt ∗ gl,ζ,k|
∥∥∥q
Lr(Rn)

)1/q∥∥∥
Lp(Rn)

≤
∥∥∥(∑

l∈Z

∥∥∥ sup
t>0

∣∣∣|ψt| ∗ ( sup
k∈Z
|gl,ζ,k|

)∣∣∣∥∥∥q
Lr(Rn)

)1/q∥∥∥
Lp(Rn)

≤ CA
∥∥∥(∑

l∈Z

∥∥∥ sup
k∈Z
|gl,ζ,k|

∥∥∥q
Lr(Rn)

)1/q∥∥∥
Lp(Rn)

for any 1 < p, q, r <∞. Fix 1 < p, q, r <∞, by the duality, Fubini’s theorem,
Hölder’s inequality and our assumption (1.8) again, there exists a sequence of
functions {fl,ζ}l,ζ such that ‖{fl,ζ}‖Lp′ (`q′ (Lr′ (Rn),Rn)) = 1 and∥∥∥(∑

l∈Z

∥∥∥∑
k∈Z

∫ 2v

1

|ψ2kvt ∗ gl,ζ,k|dt
∥∥∥q
Lr(Rn)

)1/q∥∥∥
Lp(Rn)

=
∥∥∥(∑

l∈Z

∥∥∥∑
k∈Z

∫ 2v

1

|ψ2kvt ∗ gl,ζ,k|dt
∥∥∥q
Lr(Rn)

)1/q∥∥∥
Lp(Rn)

=
∑
l∈Z

∫
Rn

∫
Rn

∑
k∈Z

∫ 2v

1

|ψ2kvt ∗ gl,ζ,k|dt|fl,ζ(x)|dζdx

=
∑
l∈Z

∫
Rn

∫
Rn

∑
k∈Z
|gl,ζ,k|

∫ 2v

1

|ψ2kvt| ∗ | ˜fl,ζ |(−x)|dtdζdx

≤ Cv
∑
l∈Z

∫
Rn

∫
Rn

∑
k∈Z
|gl,ζ,k| sup

t>0

∣∣|ψt| ∗ (| ˜fl,ζ |)
∣∣(−x)dζdx

≤ Cv
∥∥∥(∑

l∈Z

∥∥∥∑
k∈Z
|gl,ζ,k|

∥∥∥q
Lr(Rn)

)1/q∥∥∥
Lp(Rn)∥∥∥(∑

l∈Z

∥∥∥ sup
t>0

∣∣|ψt| ∗ (| ˜fl,ζ |)
∣∣∥∥∥q′
Lr′ (Rn)

)1/q′∥∥∥
Lp′ (Rn)

≤ CAv
∥∥∥(∑

l∈Z

∥∥∥∑
k∈Z
|gl,ζ,k|

∥∥∥q
Lr(Rn)

)1/q∥∥∥
Lp(Rn)

,

where ˜fl,ζ(x) = fl,ζ(−x). This together with (3.8) yields∥∥∥(∑
l∈Z

∥∥∥(∑
k∈Z

(∫ 2v

1

|ψ2kvt ∗ gl,ζ,k|2dt
)1/2∥∥∥q

Lr(Rn)

)1/q∥∥∥
Lp(Rn)

(3.9)
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≤ CAv1/2
∥∥∥(∑

l∈Z

∥∥∥(∑
k∈Z
|gl,ζ,k|2

)1/2∥∥∥q
Lr(Rn)

)1/q∥∥∥
Lp(Rn)

for any 1 < p, q, r <∞, where C is independent of A and v.
Fix 1 < p, q < ∞, we can choose 1 < r < min(p, q). By Lemma 2.1, (3.3),

(3.9) and Hölder’s inequality, we obtain
(3.10)
‖Aj(f)‖Eαp,q

=
∥∥∥(∑

l∈Z
2lqα

(∫
Rn

(∑
k∈Z

∫ 2(k+1)v

2kv
|ψt ∗ Γj−k∆2−lζ(f)|2 dt

t

)1/2

dζ
)q)1/q∥∥∥

Lp(Rn)

=
∥∥∥(∑

l∈Z
2lqα

(∫
Rn

(∑
k∈Z

∫ 2v

1

|ψ2kvt ∗ Γj−k∆2−lζ(f)|2 dt
t

)1/2

dζ
)q)1/q∥∥∥

Lp(Rn)

≤
∥∥∥(∑

l∈Z
22qα

∥∥∥(∑
k∈Z

∫ 2v

1

|ψ2kvt ∗ Γj−k∆2−lζ(f)|2dt
)1/2∥∥∥q

Lr(Rn)

)1/q∥∥∥
Lp(Rn)

≤ CAv1/2
∥∥∥(∑

l∈Z

∥∥∥(∑
k∈Z
|Γj−k(2lα∆2−lζ(f))|2

)1/2∥∥∥q
Lr(Rn)

)1/q∥∥∥
Lp(Rn)

≤ CAv1/2
( 2v

2v − 1

)n+2∥∥∥(∑
l∈Z

2lqα‖∆2−lζ(f)‖qLr(Rn)

)1/q∥∥∥
Lp(Rn)

≤ CAv1/2‖f‖Ḟp,qα (Rn),

where the constant C > 0 is independent of A, v.
Interpolation between (3.7) and (3.10) implies that for any 1 < p, q < ∞,

there exists θ ∈ (0, 1] and a constant C > 0 independent of A, v such that

(3.11) ‖Aj(f)‖Eαp,q ≤ CAv
1/22−cθ|j|/2‖f‖Ḟp,qα (Rn).

Combining (3.11) with (3.5) yields (3.2) and completes the proof of Theorem
1.2. �

Proof of Theorem 1.1. It was shown in Lemmas 1-3 of [11] that there exists a
constant C depending on ψ, h, Ω such that

(3.12)

∫ 2k+1

2k
|ψ̂(tξ)|2 dt

t
≤ C min(1, |2kξ|ε, |2kξ|−ε)

for all k ∈ Z, ξ ∈ Rn and some ε > 0 if ψ satisfies the condition of Theorem B.
It follows from [12, Lemma 2] that there exists C > 0 independent of s, ψ, h, Ω
such that

(3.13)

∫ 2(k+1)s′

2ks′
|ψ̂(tξ)|2 dt

t
≤ Cs′‖ψ‖2Ls(Rn) min{1, |2ks

′
ξ|1/(2s

′), |2ks
′
ξ|−1/(2s′)}

if ψ ∈ Ls(Rn) for some s > 1.
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On the other hand, when ψ satisfies the condition of Theorem B or C, as in
Stein [14, pp. 63–64], we can show that

(3.14) sup
t>0

∣∣|ψt| ∗ f(x)
∣∣ ≤ ‖h‖L1(Rn)v

−1
n MΩ(f)(x),

where vn is the volume of the unit ball in Rn and

MΩ(f)(x) = sup
t>0

t−n
∫
|y|<t

|f(x− y)|Ω(
y

|y|
)dy.

One can easily check that

(3.15) MΩ(f)(x) ≤
∫
Sn−1

Ω(y′)My′(f)(x)dσ(y′),

where y′ = y
|y| and My′ is the directional Hardy-Littlewood maximal function

along y′. We notice that ‖mψ‖L1(Rn) = ‖h‖L1(Rn)‖Ω‖L1(Sn−1)(nvn)−1. By
(3.14)-(3.15), Lemma 2.2 and Minkowski’s inequality, we can obtain

(3.16)

∥∥∥(∑
l∈Z

∥∥∥ sup
t>0

∣∣|ψt| ∗ fl,ζ∣∣∥∥∥q
Lr(Rn)

)1/q∥∥∥
Lp(Rn)

≤ C‖mψ‖L1(Rn)

∥∥∥(∑
l∈Z
‖fl,ζ‖qLr(Rn)

)1/q∥∥∥
Lp(Rn)

for any 1 < p, q, r <∞, where C > 0 is independent of s, ψ, h, Ω.
By (3.12), (3.16) and Theorem 1.2 with v = A = 1, there exists a constant

C > 0 depending on ψ, h, Ω such that

‖gψ(f)‖Ḟp,qα (Rn) ≤ C‖f‖Ḟp,qα (Rn)

for all 0 < α < 1 and 1 < p, q <∞ if ψ satisfies the condition of Theorem B.
It follows also from (3.13), (3.16) and Theorem 1.2 with v = s′ and A =

‖ψ‖Ls(Rn) + ‖mψ‖L1(Rn) that there exists a constant C > 0 independent of
s, ψ, h, Ω such that

‖gψ(f)‖Ḟp,qα (Rn) ≤ C(‖ψ‖Ls(Rn) + ‖mψ‖L1(Rn))‖f‖Ḟp,qα (Rn)

for all 0 < α < 1 and 1 < p, q < ∞ if ψ satisfies the condition of Theorem C.
This finishes the proof of Theorem 1.1. �

Proof of Corollary 1.1. One can easily check that H ∈ Lr(Rn) for any 1 <
r ≤ 2. Employing the notation in [12], let F1 = {θ ∈ Sn−1 : |Ω(θ)| ≤ 2} and
Fk = {θ ∈ Sn−1 : 2k−1 < |Ω(θ)| ≤ 2k} for any k ≥ 2. Let Ek = {x ∈ B(0, 1) :
x 6= 0, x′ ∈ Fk} for all k ≥ 1, B(0, 1) = {x ∈ Rn : |x| ≤ 1} and Ωk = ΩχFk .
We decompose ψ as ψ =

∑∞
k=1 ψk, where

ψk = ψχEk − |B(0, 1)|−1

∫
Ek

ψ(x)dxχB(0,1).

Note that ∫
Rn
ψk(x)dx = 0;
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|ψ(x)χEk | ≤ H(x)Ωk(x′)χB(0,1);∣∣∣|B(0, 1)|−1

∫
Ek

ψ(x)dxχB(0,1)

∣∣∣ ≤ ‖H‖L1(Rn)‖Ω‖L1(Sn−1)χB(0,1).

Let

h∗(|x|) = (H(x) + ‖H‖L1(Rn))χB(0,1)(x) and Ω∗k(x′) = Ωk(x′) + ‖Ωk‖L1(Sn−1).

One can easily check that

|ψk(x)| ≤ h∗(|x|)Ω∗k(x′),

where h∗ is a nonnegative, nonincreasing function on (0,∞) with supported in
(0, 1] and Ω∗k is a nonnegative function on Sn−1. Specially, h∗(|x|) ∈ L1(Rn),
Ω∗k ∈ L1(Sn−1) and ψk ∈ Ls(Rn) for any 1 < s ≤ 2. Let ψk,t = t−nψk(t−1x)
and mψk = h∗(|x|)Ω∗k(x′). By (3.1) and Minkowski’s inequality,

(3.17)

‖gψ(f)‖Ḟp,qα (Rn)

≤ C
∥∥∥(∑

l∈Z
2lqα

(∫
Rn

(∫ ∞
0

|ψt ∗∆2−lζ(f)|2 dt
t

)1/2

dζ
)q)1/q∥∥∥

Lp(Rn)

≤ C

∞∑
k=1

∥∥∥(∑
l∈Z

2lqα
(∫

Rn

(∫ ∞
0

|ψk,t ∗∆2−lζ(f)|2 dt
t

)1/2

dζ
)q)1/q∥∥∥

Lp(Rn)

for all 0 < α < 1 and 1 < p, q < ∞. By the proofs of Theorems 1.1-1.2, there
exists a constant C > 0 independent of s, ψk, h

∗,Ω∗k such that

(3.18)

∥∥∥(∑
l∈Z

2lqα
(∫

Rn

(∫ ∞
0

|ψt ∗∆2−lζ(f)|2 dt
t

)1/2

dζ
)q)1/q∥∥∥

Lp(Rn)

≤ C(s/(s− 1))1/2(‖ψk‖Ls(Rn) + ‖mψk‖L1(Rn))‖f‖Ḟp,qα (Rn)

for all 0 < α < 1 and 1 < p, q < ∞. Taking s = 1 + 1/k. It follows from
(3.17)-(3.18) that

(3.19)

‖gψ(f)‖Ḟp,qα (Rn)

≤ C

∞∑
k=1

k1/2(‖ψk‖L1+1/k(Rn) + ‖mψk‖L1(Rn))‖f‖Ḟp,qα (Rn)

for all 0 < α < 1 and 1 < p, q <∞, where C > 0 is independent of k, ψk, h,Ω.
Note that

‖mψk‖L1(Rn) ≤ C‖h∗‖L1(Rn)‖Ω∗k‖L1(Sn−1) ≤ C‖H‖L2(Rn)‖Ωk‖L1+1/k(Sn−1);

‖ψk‖L1+1/k(Rn) ≤ C‖H‖L2(Rn)‖Ωk‖L1+1/k(Sn−1);

‖Ωk‖L1+1/k(Sn−1) =

{
C‖Ωk‖L1(Sn−1), if ‖Ωk‖L1(Sn−1) ≥ 2−k;

2−k
2/(k+1), if ‖Ωk‖L1(Sn−1) < 2−k.
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It follows from (3.19) that

‖gψf‖Ḟp,qα (Rn)

≤ C‖H‖L2(Rn)

∞∑
k=1

(k1/22−k
2/(k+1) + k1/2‖Ωk‖L1(Sn−1))‖f‖Ḟp,qα (Rn)

≤ C‖H‖L2(Rn)(1 + ‖Ω‖L(log+ L)1/2(Sn−1))‖f‖Ḟp,qα (Rn).

This yields the conclusion of Corollary 1.1. �
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