• Title/Summary/Keyword: operator space

Search Result 974, Processing Time 0.028 seconds

NEW KINDS OF CONTINUITY IN FUZZY NORMED SPACES

  • Hazarika, Bipan;Mohiuddine, S.A.
    • Honam Mathematical Journal
    • /
    • v.43 no.3
    • /
    • pp.547-559
    • /
    • 2021
  • We first define the notions of filter continuous, filter sequentially continuous and filter strongly continuous in the framework of fuzzy normed space (FNS), and then we introduce the notion of filter slowly oscillating sequences in the setting of FNS and shows that this notion is stronger than slowly oscillating sequences. Further, we define the concept of filter slowly oscillating continuous functions, filter Cesàro slowly oscillating sequences as well as some other related notions in the aforementioned space and investigate several related results.

ROTATIONAL HYPERSURFACES CONSTRUCTED BY DOUBLE ROTATION IN FIVE DIMENSIONAL EUCLIDEAN SPACE 𝔼5

  • Erhan Guler
    • Honam Mathematical Journal
    • /
    • v.45 no.4
    • /
    • pp.585-597
    • /
    • 2023
  • We introduce the rotational hypersurface x = x(u, v, s, t) constructed by double rotation in five dimensional Euclidean space 𝔼5. We reveal the first and the second fundamental form matrices, Gauss map, shape operator matrix of x. Additionally, defining the i-th curvatures of any hypersurface via Cayley-Hamilton theorem, we compute the curvatures of the rotational hypersurface x. We give some relations of the mean and Gauss-Kronecker curvatures of x. In addition, we reveal Δx=𝓐x, where 𝓐 is the 5 × 5 matrix in 𝔼5.

A Study on the Problems and Resolutions of Provisions in Korean Commercial Law related to the Aircraft Operator's Liability of Compensation for Damages to the Third Party (항공기운항자의 지상 제3자 손해배상책임에 관한 상법 항공운송편 규정의 문제점 및 개선방안)

  • Kim, Ji-Hoon
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.29 no.2
    • /
    • pp.3-54
    • /
    • 2014
  • The Republic of Korea enacted the Air Transport Act in Commercial Law which was entered into force in November, 2011. The Air Transport Act in Korean Commercial Law was established to regulate domestic carriage by air and damages to the third party which occur within the territorial area caused by aircraft operations. There are some problems to be reformed in the Provisions of Korean Commercial Law for the aircraft operator's liability of compensation for damages to the third party caused by aircraft operation as follows. First, the aircraft operator's liability of compensation for damages needs to be improved because it is too low to compensate adequately to the third party damaged owing to the aircraft operation. Therefore, the standard of classifying per aircraft weight is required to be detailed from the current 4-tier into 10-tier and the total limited amount of liability is also in need of being increased to the maximum 7-hundred-million SDR. In addition, the limited amount of liability to the personal damage is necessary to be risen from the present 125,000 SDR to 625,000 SDR according to the recent rate of prices increase. This is the most desirable way to improve the current provisions given the ordinary insurance coverage per one aircraft accident and various specifications of recent aircraft in order to compensate the damaged appropriately. Second, the aircraft operator shall be liable without fault to damages caused by terrorism such as hijacking, attacking an aircraft and utilizing it as means of attack like the 9 11 disaster according to the present Air Transport Act in Korean Commercial Law. Some argue that it is too harsh to aircraft operators and irrational, but given they have also some legal duties of preventing terrorism and in respect of helping the third party damaged, it does not look too harsh or irrational. However, it should be amended into exempting aircraft operator's liability when the terrorism using of an aircraft by well-organized terrorists group happens like 9 11 disaster in view of balancing the interest between the aircraft operator and the third party damaged. Third, considering the large scale of the damage caused by the aircraft operation usually aircraft accident, it is likely that many people damaged can be faced with a financial crisis, and the provision of advance payment for air carrier's liability of compensation also needs to be applied to the case of aircraft operator's liability. Fourth, the aircraft operator now shall be liable to the damages which occur in land or water except air according to the current Air Transport Act of Korean Commercial Law. However, because the damages related to the aircraft operation in air caused by another aircraft operation are not different from those in land or water. Therefore, the term of 'on the surface' should be eliminated in the term of 'third parties on the surface' in order to make the damages by the aircraft operation in air caused by another aircraft operation compensable by Air Transport Act of Korean Commercial Law. It is desired that the Air Transport Act in Commercial Law including the clauses related to the aircraft operator's liability of compensation for damages to the third party be developed continually through the resolutions about its problems mentioned above for compensating the third party damaged appropriately and balancing the interest between the damaged and the aircraft operator.

Human-in-the-loop experiments design for workload effectiveness verification of multiple-UAV operators (복수무인기 운용자의 임무과부하지표 효용성 검증을 위한 human-in-the-loop 실험 설계 및 구현)

  • Lim, Hyung-Jin;Choi, Seong-Hwan;Shin, Eun-Chul;Oh, Jang-Jin;Kim, Byoung Soo;Kim, Seungkeun;Yang, Ji Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.284-291
    • /
    • 2017
  • There is no doubt that advances in UAV technology have improved military performance. However, these advances require humans to adapt to new and complex operational systems. UAV has been rapidly expanding to a variety of fields such as reconnaissance, transportation, communication and aerial photographing recently. Also, with the development of UAV automation technology, one operator is able to supervisory-control multiple-UAVs. However, as the number of assigned UAV increases, the amount of information increases and this results in the workload of the operator increasing and deterioration in controlling performance. Accordingly, there is a need for a model to determine the level of overload an operator may encounter with regard to multiple-UAV but nationally this kind of research is currently lacking. Therefore, this paper provides an experimental platform for evaluating workload index effectiveness integrating multiple-UAV operational environments, GCS, and eye-tracking system followed by a limited survey of domestic and international studies of multi-UAV overload studies.

COMPOSITION OPERATORS ON 𝓠K-TYPE SPACES AND A NEW COMPACTNESS CRITERION FOR COMPOSITION OPERATORS ON 𝓠s SPACES

  • Rezaei, Shayesteh
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.55-64
    • /
    • 2017
  • For -2 < ${\alpha}$ < ${\infty}$ and 0 < p < ${\infty}$, the $\mathcal{Q}_K$-type space is the space of all analytic functions on the open unit disk ${\mathbb{D}}$ satisfying $$_{{\sup} \atop a{\in}{\mathbb{D}}}{\large \int_{\mathbb{D}}}{{\mid}f^{\prime}(z){\mid}}^p(1-{{\mid}z{\mid}^2})^{\alpha}K(g(z,a))dA(z)<{\infty}$$, where $g(z,a)=log\frac{1}{{\mid}{\sigma}_a(z){\mid}}$ is the Green's function on ${\mathbb{D}}$ and K : [0, ${\infty}$) [0, ${\infty}$), is a right-continuous and non-decreasing function. For 0 < s < ${\infty}$, the space $\mathcal{Q}_s$ consists of all analytic functions on ${\mathbb{D}}$ for which $$_{sup \atop a{\in}{\mathbb{D}}}{\large \int_{\mathbb{D}}}{{\mid}f^{\prime}(z){\mid}}^2(g(z,a))^sdA(z)<{\infty}$$. Boundedness and compactness of composition operators $C_{\varphi}$ acting on $\mathcal{Q}_K$-type spaces and $\mathcal{Q}_s$ spaces is characterized in terms of the norms of ${\varphi}^n$. Thus the author announces a solution to the problem raised by Wulan, Zheng and Zhou.

Design of Mobility System for Ground Model of Planetary Exploration Rover

  • Kim, Younkyu;Eom, Wesub;Lee, Joo-Hee;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.413-422
    • /
    • 2012
  • In recent years, a number of missions have been planned and conducted worldwide on the planets such as Mars, which involves the unmanned robotic exploration with the use of rover. The rover is an important system for unmanned planetary exploration, performing the locomotion and sample collection and analysis at the exploration target of the planetary surface designated by the operator. This study investigates the development of mobility system for the rover ground model necessary to the planetary surface exploration for the benefit of future planetary exploration mission in Korea. First, the requirements for the rover mobility system are summarized and a new mechanism is proposed for a stable performance on rough terrain which consists of the passive suspension system with 8 wheeled double 4-bar linkage (DFBL), followed by the performance evaluation for the mechanism of the mobility system based on the shape design and simulation. The proposed mobility system DFBL was compared with the Rocker-Bogie suspension system of US space agency National Aeronautics and Space Administration and 8 wheeled mobility system CRAB8 developed in Switzerland, using the simulation to demonstrate the superiority with respect to the stability of locomotion. On the basis of the simulation results, a general system configuration was proposed and designed for the rover manufacture.

Korea Pathfinder Lunar Orbiter Flight Dynamics Simulation and Rehearsal Results for Its Operational Readiness Checkout

  • Song, Young-Joo;Bae, Jonghee;Hong, SeungBum;Bang, Jun
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.181-194
    • /
    • 2022
  • Korea Pathfinder Lunar Orbiter (KPLO), also known as Danuri, was successfully launched on 4 Aug. from Cape Canaveral Space Force Station using a Space-X Falcon-9 rocket. Flight dynamics (FD) operational readiness was one of the critical parts to be checked before the flight. To demonstrate FD software's readiness and enhance the operator's contingency response capabilities, KPLO FD specialists planned, organized, and conducted four simulations and two rehearsals before the KPLO launch. For the efficiency and integrity of FD simulation and rehearsal, different sets of blind test data were prepared, including the simulated tracking measurements that incorporated dynamical model errors, maneuver execution errors, and other errors associated with a tracking system. This paper presents the simulation and rehearsal results with lessons learned for the KPLO FD operational readiness checkout. As a result, every functionality of FD operation systems is firmly secured based on the operation procedure with an enhancement of contingency operational response capability. After conducting several simulations and rehearsals, KPLO FD specialists were much more confident in the flight teams' ability to overcome the challenges in a realistic flight and FD software's reliability in flying the KPLO. Moreover, the results of this work will provide numerous insights to the FD experts willing to prepare deep space flight operations.

Duality of Paranormed Spaces of Matrices Defining Linear Operators from 𝑙p into 𝑙q

  • Kamonrat Kamjornkittikoon
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.2
    • /
    • pp.235-250
    • /
    • 2023
  • Let 1 ≤ p, q < ∞ be fixed, and let R = [rjk] be an infinite scalar matrix such that 1 ≤ rjk < ∞ and supj,k rjk < ∞. Let 𝓑(𝑙p, 𝑙q) be the set of all bounded linear operator from 𝑙p into 𝑙q. For a fixed Banach algebra 𝐁 with identity, we define a new vector space SRp,q(𝐁) of infinite matrices over 𝐁 and a paranorm G on SRp,q(𝐁) as follows: let $$S^R_{p,q}({\mathbf{B}})=\{A:A^{[R]}{\in}{\mathcal{B}}(l_p,l_q)\}$$ and $G(A)={\parallel}A^{[R]}{\parallel}^{\frac{1}{M}}_{p,q}$, where $A^{[R]}=[{\parallel}a_{jk}{\parallel}^{r_{jk}}]$ and M = max{1, supj,k rjk}. The existance of SRp,q(𝐁) equipped with the paranorm G(·) including its completeness are studied. We also provide characterizations of β -dual of the paranormed space.

WEAK AND STRONG CONVERGENCE CRITERIA OF MODIFIED NOOR ITERATIONS FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN THE INTERMEDIATE SENSE

  • Banerjee, Shrabani;Choudhury, Binayak Samadder
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.493-506
    • /
    • 2007
  • In this paper weak and strong convergence theorems of modified Noor iterations to fixed points for asymptotically nonexpansive mappings in the intermediate sense in Banach spaces are established. In one theorem where we establish strong convergence we assume an additional property of the operator whereas in another theorem where we establish weak convergence assume an additional property of the space.

Weighted LP Estimates for a Rough Maximal Operator

  • Al-Qassem, H.M.
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.2
    • /
    • pp.255-272
    • /
    • 2005
  • This paper is concerned with studying the weighted $L^P$ boundedness of a class of maximal operators related to homogeneous singular integrals with rough kernels. We obtain appropriate weighted $L^P$ bounds for such maximal operators. Our results are extensions and improvements of the main theorems in [2] and [5].

  • PDF