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ROTATIONAL HYPERSURFACES CONSTRUCTED BY
DOUBLE ROTATION IN FIVE DIMENSIONAL EUCLIDEAN
SPACE FE°

ErHAN GULER

Abstract. We introduce the rotational hypersurface x = x(u,v,s,t)
constructed by double rotation in five dimensional Euclidean space E°.
We reveal the first and the second fundamental form matrices, Gauss
map, shape operator matrix of x. Additionally, defining the i-th curva-
tures of any hypersurface via Cayley-Hamilton theorem, we compute the
curvatures of the rotational hypersurface x. We give some relations of
the mean and Gauss-Kronecker curvatures of x. In addition, we reveal
Ax =Ax, where A is the 5 x 5 matrix in E°.

1. Introduction

The ruled (helicoidal) and rotational characters is related by Bour theorem
in [6]. Do Carmo and Dajczer [14] studied the helicoidal surfaces by using Bour
in Euclidean 3-space E3. Dillen, Pas, and Verstraelen [13] focused on the only
surfaces satisfying Ar = Ar + B, A € Mat(3,3), and B € Mat(3,1), are the
minimal surfaces, spheres, and circular cylinders.

Cheng and Yau [12] considered the hypersurfaces with constant scalar cur-
vature. Lawson [26] gave the minimal submanifolds and indicated the general
definition of the Laplace—Beltrami operator.

Chen [7, 8, 9, 10] studied the submanifolds of the finite-type whose immer-
sion is into E™ (or E") by using a finite number of eigenfunctions of their
Laplacian. Chen et al. [11] conducted an extensive investigation into 1-type
submanifolds and submanifolds characterized by 1-type Gauss maps over the
past four decades.

Moore [28, 29] considered the general rotational surfaces. Ganchev and
Milousheva [15] gave the analogue of these surfaces in the Minkowski 4-space.
Hasanis and Vlachos [25] studied the hypersurfaces with harmonic mean cur-
vature vector field. Arslan et al. [1] considered the Vranceanu surface having
pointwise 1-type Gauss map. Magid, Scharlach, and Vrancken [27] introduced
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the affine umbilical surfaces; Scharlach [30] studied the affine geometry of sur-
faces and hypersurfaces. Arslan et al. [2] worked the generalized rotational
surfaces. Arslan et al [3] studied the tensor product surfaces having point-
wise 1-type Gauss map. Giiler, Magid, and Yayh [19] introduced the helicoidal
hypersurfaces in E*. Giiler, Hacisalihoglu, and Kim [18] served Gauss map
and the third Laplace-Beltrami operator of the rotational hypersurface in E*.
Giiler [17] obtained the rotational hypersurfaces having A’R = AR, where
A € Mat(4,4) in E*. He [16] also worked the fundamental form IV and the
curvature formulas of the hypersphere in E.

Arslan, Siitveren, and Bulca [5] considered the rotational A-hypersurfaces
in Euclidean spaces. Giiler, Yayli, and Hacisalihoglu [20, 21, 22, 23] served the
bi-rotational hypersurfaces in E* and E3, respectively.

In this work, we consider the rotational hypersurface x = x(u, v, s,t) in Eu-
clidean 5-space E°. We give some notions of five dimensional Euclidean geome-
try in Section 2. We reveal the first and the second fundamental form matrices,
Gauss map, shape operator matrix of any hypersurface in E°. In Section 3, we
give the definition of a rotational hypersurface in E®. Moreover, in Section 4,
defining the i-th curvatures of any hypersurface via Cayley-Hamilton theorem,
we give the curvature formulas, and compute the curvatures of the rotational
hypersurface x. We give some relations for the mean and Gauss-Kronecker
curvatures of x. In addition, in the last section, we prove the following main
theorems:

Theorem 1.1. The Laplace—Beltrami operator of the rotational hypersur-
face

x(u,v,8,t) = (f(u,v) coss, f(u,v)sins, g(u,v) cost, g(u,v)sint, h(u,v))

is given by Ax = 4K1G, where K1 denotes the mean curvature, G represents
the Gauss map of x.

Theorem 1.2. Let x: M* C E* — E® be an immersion given by
x(u,v,8,t) = (f(u,v) cos s, f(u,v)sins, g(u,v)cost, g(u,v)sint, h(u,v)).

There exists a matrix A of order 5 such that Ax = Ax if and only if x has
K1 =0, i.e., it is a minimal hypersurface.

2. Preliminaries

We introduce the first and second fundamental forms, Gauss map G, the
shape operator matrix S, curvature formulas: the mean curvature Ky, and the
Gauss-Kronecker curvature K4 of a hypersurface x = x(u, v, s,t) in Euclidean
5-space E®. We identify a vector o with its transpose in this work.

We assume that x = x(u, v, s,t) is an immersion from M* C E* to E°.
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Definition 2.1. A Euclidean dot product ofaj = (a1,...,2}), J:? = (23, ..., 22
of E® is given by

5
R s
i=1

%
Definition 2.2. A quadruple vector product of :ﬁ, ...,x* of E® is defined
by

€1 €2 €3 €4 €5
SR R R T
<+ 3 3 3 Ty Xy X3 Ty Ty
' xa®xa®xat =det | 22 23 23 2] a2
3 a3 a3 i

4 .4 .4 .4 4
T Ty Tz Ty Ty

where e;, i = 1,...,5, are the base elements of E®.

Definition 2.3. For a hypersurface x(u,v, s,t) in 5-space, the first and
second fundamental form matrices, respectively, are given by

E F A D L M P X

| F ¢ B no| M N T Y
A B C Q| P T V Z |
D J Q S X Y 7z I

with

detI = (EG-F?)(CS—-Q*) + (J*—GS)A*+ (D* - ES) B?
+2((CF — AB)DJ + (EB — FA)JQ + (GA - FB) DQ)
— (EJ?+GD?) C 4+ 2FABS,
detII = (LN —M?)(IV —2Z?)+ (Y?—IN) P>+ (X*>—1L)T?
+2((VM — PT) XY + (LT — MP)YZ + (NP — MT) X Z)
— (LY? + NX?)V + 2MIPT.

Here, the components of the matrices are described by

E=x,-%xy, F=x,-%xy, A=xy'Xs, D=%x,-%, G=Xy" Xy,
B=x,-Xs, J=%y:%X, C=%Xs-%X5, Q=Xs5:%4, §=%4- %y,
L=xu,- G, M=x%x,-G, P=xu,-G, X=x,-G, N=x4, G,
T=X%Xps- G, Y=%x4+- G, V=x,-G, Z=x4-G, [I=x4- G,

_ 0 _ 02 _ 02
Xu = Gy Xuv = Fogos Xov = gy, etc., and

Xy X Xy X Xg X Xy

G

X X Xy X X X Xq|

is the Gauss map of x.
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Definition 2.4. Computing I~II, the shape operator matrix S = ﬁ ( 845 )4X4
is found with the following components

s;i1 = AJ*P—-CJ?L-B?’LS+ B*>XD+CJMD — BJPD — BMQD
—~CGXD + GPQD + ABMS — ABJX — AJMQ + BJLQ
+BJLQ — CFMS + CGLS — AGPS + BFPS + CFJX
+AGQX — BFQX — FJPQ+ FMQ? — GLQ?,

s19 = AJ*T—CJ*M — B>MS+ B*YD +CJND — BJTD — BNQD
—CGYD+GQTD + ABNS — ABJY — AJNQ + BJMQ
+BJMQ@Q — CFNS +CGMS + CFJY — AGST + BFST
+AGQY — BFQY + FNQ? — GMQ? — FJQT,

s;3 = AJ*V —CJ*P—-B?*PS+B*ZD+CJTD — BJVD —CGZD
—BQTD + GQVD — ABJZ + ABST + BJOP + BJPQ
+CFJZ + CGPS — AJOT — CFST + AGQZ — AGSV
—BFQZ + BFSV — FJQV — GPQ? + FTQ?,

s = AJ*Z—-CJ?*X —B*SX + B?DI —BJZD+ CJYD — BQYD
+GQZD — ABJI + CFJI + AGQI — BFQI — CGDI
+ABSY — AJQY + BJQX — AGSZ + BFSZ + BJQX
—CFSY +CGSX — FJQZ + FQ?Y — GQ*X,

sg1 = —A*MS+ A?JX —CMD?+ BPD?+CJLD — ABXD
—~AJPD + AMQD — BLQD + AMQD + CFXD + CMSE
—BPSE —CJXE — FPQD + BQXE + JPQE — MQ*E
+ABLS — AJLQ — CFLS + AFPS — AFQX + FLQ?,

s = A?JY — A2NS - CND? + BTD?+CJMD — ABY D
+ANQD — BMQD — AJTD + ANQD + CFYD + CNSE
—CJYE — BSTE + BQYE — FQTD — NQ*E + JQTE
+ABMS — AJMQ — CFMS + AFST — AFQY + FMQ?,

sy = A?JZ — A®ST —CTD? + BVD? — ABZD + CJPD
—~AJVD — BQPD +CFZD + AQTD + AQTD — CJZE
+CSTE + BQZE — BSVE — FQVD + JQVE — Q°TE
+ABPS — AJPQ — CFPS — AFQZ + AFSV + FPQ?,
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= —A2SY + A%2JI -CYD?*+BZD? - AJZD +CJXD
+AQYD — BQXD + AQYD — BSZE + CSYE — FQZD
+JQZE — Q*YE — AFQI — ABDI + CFDI — CJEI
+BQEFEI + ABSX + AFSZ — AJQX — CFSX + FQ?X,

AJ?L — F?°PS + F?°QX + BMD?* — GPD? — J?PE — AJMD
~BJLD +AGXD — BFXD +2FJPD — FMQD + GLQD

—~BMSE + BJXE + JMQE + GPSE — GQXE + AFMS
~AGLS + BFLS — AFJX — FJLQ,

AJ?M — F2ST + F?0Y + BND? — GTD? — J°TE — AJND
—BJMD + AGYD — BFYD — FNQD + GMQD — BNSE
+2FJTD + BJYE + JNQE + GSTE — GQYE + AFNS
—AGMS + BFMS — AFJY — FIMQ,

AJ*P + F?QZ — F?SV + BTD? - GVD? — J*VE — BJPD
—AJTD 4+ AGZD — BFZD +2FJVD + GQPD + BJZE
—FQTD — BSTE + JQTE — GQZE + GSVE — AFJZ
—AGPS + BFPS + AFST — FJQP,

AJ?X —F?’SZ + BYD? - GZD? — J*ZE + F?QI — AJYD
—BJXD+2FJZD — FQYD + GQXD — BSYE + JQYE
+GSZE — AFJI + AGDI — BFDI + BJEI — GQEI
+AFSY — AGSX + BFSX — FJQX,

A2JM — A’GX — CF?X + F?PQ + B>LD — B*XE — ABMD
+CFMD — CGLD + AGPD — BFPD — CJME + BJPE
+BMQFE + CGXE — GPQE — ABJL + CFJL +2ABFX
—~AFJP — AFMQ + AGLQ — BFLQ,

A%2JN — A’GY — CF?*Y + F?QT + B>MD — B’YE — ABND
+CFND —CGMD — CJNE + AGTD — BFTD + BJTE
+BNQE + CGYE — GQTE — ABJM + CFJM + 2ABFY
—~AFJT — AFNQ + AGMQ — BFMQ,

A2JT — A’GZ — CF*Z + F?QV + B?*PD — B*ZE — ABTD
—~CGPD + CFTD + AGVD — BFVD — CJTE + BJVE
+CGZE + BQTE — GQVE — ABJP + 2ABFZ + CFJP
—AFJV + AGPQ — BFPQ — AFQT,
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sag = A?JY +F?QZ+ B>XD — A®GI — CF?I — B*EI — ABYD
+AGZD — BFZD +CFYD —CGXD + BJZE —CJYE
+BQYE — GQZE +2ABFI + CGEI — ABJX — AFJZ
+CFJX — AFQY + AGQX — BFQX.

Definition 2.5. The formulas of the mean and the Gauss-Kronecker cur-
vatures, respectively, are given by

(1) 1= 1 (S).
and
detII
(2) Ky = det(S) = R
where
tr(S) = (EN+GL—2FM)(CS—Q*) + (EG—F?)(SV+1C)

—(GI+NS)A? — (LS + EI)B*> - (CN + GV)D?* — (EV + CL) J?
+2(A%JY + B*XD + D*BT + J*AP + F?*QZ + CJMD — ABY D
—~BJPD + ANQD — AJTD — BMQD + AGZD — BFZD + CFY D
~AGPS — CGXD + FJVD +GQPD + BJZE — CJYE + BFPS
~BSTE — FQTD + BQYE + JQTE + AGQX — BFQX — GQZE
+ABFI — FJPQ + AFST — AFQY + ABMS — ABJX — AJMQ
+BJLQ+ CFJX — AFJZ)/ det],

and
detI = (EG-—F?)(CS-Q*) + (J?—GS)A*+ (D* - ES) B?
+2((CF — AB)DJ + (EB — FA)JQ + (GA — FB) DQ)
— (EJ? + GD?*) C + 2FABS,
detII = (LN —M?)(IV —Z?)+ (Y?>—IN) P>+ (X*—IL)T?

+2(VM —PT)XY + (LT —-MP)YZ+ (NP-MT)XZ)
— (LY? + NX?)V + 2MIPT.
A hypersurface x is j-minimal if K; = 0 identically on x.

Definition 2.6. In E°, the curvature formulas K;, where i = 0, ...,4, are

obtained by the characteristic polynomial of S:
4
(3) D (=1 s AR = Ps(\) = det(S — AZy) =0,
k=0

T4 describes the identity matrix of order 4. Hence, we reveal the curvature for-
mulas (?)ICl = s;. Here, (S)ICO = s9 = 1 (by definition), (le)lCl =S1,..., (i)l@; =
s4, and Ky is the mean curvature, K4 is the Gauss-Kronecker curvature, and

(7:) = r!('r?ir)l .
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See [24] for details. See also [18, 19, 20, 21] for details of dimension 4.

3. Rotational Hypersurface in E°

In this section, we define the rotational hypersurface in [E°.

Definition 3.1. For an open interval j, let v : ICR2—STCR’bea
surface in E°, and let ¢ be a straight line in II. A rotational hypersurface in E®
is defined as a hypersurface obtained by rotating a surface (i.e., profile surface
~) around a line (i.e., axis £).

We may suppose that ¢ is the line spanned by the vector (0,0, 0,0, 1)t. The
rotation matrix R = R(s,t) of E® is given by

coss —sins 0 0 0
sins coss 0 0 0
(4) R= 0 0 cost —sint 0 |, s, t€]0,2m),
0 0 sint cost O
0 0 0 0 1

where R{ = ¢, R'R = RR' = I, detR = 1. When the axis of rota-
tion is £, there is a Euclidean transformation by which the axis ¢ is trans-
formed to the xs-axis of E®. Parametrization of the profile surface is given by
v(u,v) = (f,0,9,0,h), where f, g, h : I ¢ R? — R? are the differentiable
functions depending on u,v € I. In [E®, the rotational hypersurface x spanned
by the vector (0,0,0,0,1), is given by x = R.y%, where u,v € I,ste [0, 27).
Therefore, the rotational hypersurface is given by

(5) x(u,v,8,t) = (f(u,v)coss, f(u,v)sins, g(u,v) cost, g(u,v)sint, h(u,v)).

4. Curvatures in E°

In this section, we obtain the curvature formulas of a hypersurface x having
four parameters in E°.

Theorem 4.1. In E°, a hypersurface x having four parameters has the
following curvature formulas, Ko = 1 by definition,

b 0
(6) 4Ky = ——, 6Ky = <, 4Ky = —~, Ky =+,

a a a a
where Ps(X) = aA* + bA3 + ¢A?2 + 0\ + ¢ = 0 is the characteristic polynomial
of shape operator matriz S, a=detI, ¢ = detII, and I, IT are the first, and the
second fundamental form matrices, respectively.
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Proof. The product matrix I7'II supplies the shape operator matrix S of
the hypersurface x in 5-space. Computing the curvature formula C;, where
i=0,1,...,4, we find the characteristic polynomial Ps(\) = det(S —AZy) =0
of S. Then, we find the following curvatures in 5-space:

1=11 <ig
4

S ik = o,

1=i1<12<13

[JUITN
NaaiZ
=
w
Il

(
(;l>icz - 24: kk::i
(
(

4 ! ¢
4) Ky = H ki= .
=1
Here, k;, 1 =1, ..., 4, denote the principal curvatures of the hypersurface x. [

See [16, 18, 19, 20, 21] for case E*.

Theorem 4.2. A hypersurface x = x(u, v, s,t) in E® has the following re-
lation

KoV — 4K IV 4 6/CI1T — 41T + KyI = 0,

where L, I, ITL, IV, V are the fundamental form matrices having order 4 x 4 of
the hypersurface.

Proof. Considering n =4 in (3), it is clear. O

Using the first derivatives of (5) with respect to u, v, s, t, we get the following
first quantities

fatga+hy  fufotgugo+huhy 00

(7) = fufo + gugo + huhy 5 + 912; + h12; 0 0
0 0 f2 0 ’

0 0 0 g2

where det I = f2g°W, W = 224+B2+¢% A = g,hy—gohu, B = fugo—fogu, € =
fuh'u - fvhu
The Gauss map of the rotational hypersurface (5) is described by
1

(8) G:W

(—Acoss, —Asins, Ccost,Csint, —B) .
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By taking the second derivatives with respect to u, v, s, t, and using them with
(8) of x, we have the following second fundamental form matrix

—Afuut+CGun—=Bhyy A fuyr+€Guy—Bhuy O 0
W1i/2 W1i/2
A fur+€guv—Bhuy —Afov+€Gyy—=Bhyy 0 0
II — Ww1i/2 wW1i/2 oA
0 0 im0
g<
0 0 0w

The matrix I7'-IT gives the shape operator matrix S of the hypersurface x.
Then, we compute the mean curvature K; and Gauss-Kronecker curvature ICy.
Therefore, the following holds.

Theorem 4.3. The mean and Gauss-Kronecker curvatures of the rotational
hypersurface (5) are given by, respectively, as follows

+ (fE€+2Ag) (A + B* + €2)
—fg (£i + g5 + 1) (Afow + €guu + Bhoy)

K ATV3/2 ’
Qlfuu + Bhyy + eguu) (Qlfvv + Bhyy + Q:gvv)
2210 {
K f 7 { B (Q[fuv + Bhy, + thuv)2
4 = )

W3
where W = 912-1-%2—"-(’:2, A = guhy —gohu, B = fugo— fogu, €= fuhy— fohay
2
and .f = f(u,v), 9= g(’lL,U), h = h(ua U); fu = %; fuv = a?uaka etc.

Proof. By using the Cayley-Hamilton theorem, we reveal the following char-
acteristic polynomial of S:

KoAt — AK1 A + 6o — K3\ + Ky = 0.
The curvatures KC; of the rotational hypersurface x are also found by the above

equation. O]

Theorem 4.4. The rotational hypersurface x in E® has the umbilical point
iff the following holds

F2g% (124 92 + 12) (—Afuw + Bl — €gun)
+fg(Cf +2Ag) (A* 4+ B2 + €2)
— 1262 (2 + g2 + h2) (Afoo + Cguw + Bhoy)
(Afur + Bl + €gun) A fow + Bhoy + Cguy)
— (Afuw + Bhyy + €guy)? :

Proof. Hypersurface x has the umbilical point, then it has the equation
(K1)' = K4 O

Open Problem 4.5. Find the h = h(u,v) solutions of the 2nd-order partial
differential equation in Theorem 4.4.

4

= 256W3fgAC {
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Corollary 4.6. Let x : M* C E* — E5 be an immersion given by (5). x
has zero mean curvature iff the following holds

(¢f +2Ag) (A* 4+ B* + )
+fg (f2 + g'u + h2) (_Q[fuu + %huu - Q:guu)
7-fg ( u + gu + hz) (Q(fvv + Q:gm; + %hvv) = 0;

where f,g,h # 0.

Open Problem 4.7. Find the h = h(u,v) solutions of the 2nd-order partial
differential equation in Corollary 4.6.

Corollary 4.8. Let x : M* C E* — E5 be an immersion given by (5). x
has zero Gauss-Kronecker curvature iff the following holds

2 2 (Q[fuu + %huu + thuu) (Q[fvv + thv'u + Q:gvv) _
f g Qw:{ - (Q[fuv + %huv + Q:guv)Z - 0’

where f,g,h # 0.

Open Problem 4.9. Find the h = h(u,v) solutions of the 2nd-order partial
differential equation in Corollary 4.8.

5. Rotational Hypersurface Supplying Ax =Ax in E°

In this section, we present the proof of the theorems in the Introduction
section. We also give the Laplace-Beltrami operator depending on the first
fundamental form of a smooth function in E°. Then, we calculate it by using
the rotational hypersurface determined by (5).

Definition 5.1. The Laplace— Beltrami operator of a smooth function ¢ =
1.2 .3

d(at 22,23 2*) |p of class C* within a constrained domain D C R* depending
on the first fundamental form is the operator defined by
4
_ 1 9 1/2,i5 99
(9) A¢—g1/zzzaxi<g g 92 )

=
where (g") = (gn)” " and g = det (gi;) -

Hence, the Laplace—Beltrami operator depending on the first fundamental
form of the rotational hypersurface x = x(u, v, s,t) is given by

(10)
D (gl/2g110x) | 0 (g1/25120x) 4 1/2g130%) 4 0 (g1/2g140x
[ B gfgl/zg%ag)) RZX A
AX = —F= Y X ! DSC )y X
#7 | el e+ e - e
+5 (g )+ (g o) T o (8780 5%) + 5 (8™ 5F)
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where
g!' = (-CJ*-B?S-GQ*+2BJQ+CGS) /g,
g? = (FQ*+CJD-BQD+ ABS - AJQ - CFS) /g = g
g = (AJ2 BJD +GQD — AGS + BFS — FJQ) /g = g™
g't* = (B*D-CGD - ABJ+CFJ+ AGQ — BFQ) /g = g"
g? = (-A’S-CD?-Q’E+2AQD + CSE) /g,
g” = (BD*-AJD-BSE-FQD+ JQE + AFS) /g = g**
g2t (A’J — ABD + CFD — CJE + BQE — AFQ) /g = g**
g? = (-F’S-GD*-J?E+2FJD+GSE) /g,
g* = (F?Q+AGD-BFD+ BJE—GQE — AFJ) /g=g"®
g = (-A°G-CF’-B?E+CGE +2ABF) /g,

and g = detI. By using the inverse matrix of (7):

w2 g+ hl)
& = det T ’
g12 _ _f292 (fufv + Gugv + huhv) o
det I
g — =g
g14 — 0= g41,
g22 _ f292 (fq% + gz% + hi)
detI ’
g — 0=
24 (fufv + gugv) hu 42
g = T g
33 g2 (912 + %2 + @2)
& N detI ’
g — 0=
PR Sl O/ SR D e i
& = det T ’

21

9

595

and by derivating the functions in (10) with respect to w,v, s, ¢, respectively,

we then present the following proof of Theorem 1.1.

Proof. By directly computing (10), we obtain Ax.

Next, we give the proof of Theorem 1.2.
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Proof. We obtain 4/C;G = Ax, and then we have the following

a11fcoss+ aiafsins+ ajggcost + ajagsint + aysh —®fgAcoss
a21f coss + ags fsins + agzgcost + agqgsint + aosh —PfgAsins
as1fcoss+ agafsins + agzgcost + azqgsint + agsh | = dfg€cost
a41fcoss+ agafsins + agzgcost + agqgsint + aqsh dfgCsint
as1fcoss+ assfsins + aszgcost + asagsint + assh —DfgB

where A is the 5 x 5 matrix ® = 4K (det I)_l/ % Derivativing above ODEs
twice with respect to s, we get the following

a15 = g5 = azs = a45 = as5 = 0, & =0.

Then, we have

a;1fcoss+ apefsins =0,
where 7 = 1,...,5. The functions sin and cos are linearly independent on s,
then all the components of the matrix A are 0. Since ® = 4K; (det I)_l/z,
then Ky = 0. This means, x is a minimal rotational hypersurface with double
rotations. O
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