References
- M. Alimohammady and M. Roohi, Compactness in fuzzy minimal spaces, Chaos Solitons Fractals 28 (2006), 906-912. https://doi.org/10.1016/j.chaos.2005.08.043
- C. Belen and S. A. Mohiuddine, Generalized weighted statistical convergence and application, Appl. Math. Comput. 219 (2013), 9821-9826. https://doi.org/10.1016/j.amc.2013.03.115
- N. L. Braha, H. M. Srivastava, S. A. Mohiuddine, A Korovkin's type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallee Poussin mean, Appl. Math. Comput. 228 (2014) 162-169. https://doi.org/10.1016/j.amc.2013.11.095
- D. Burton and J. Coleman, Quasi-Cauchy Sequences, Amer. Math. Monthly 117(4) (2010), 328-333. https://doi.org/10.4169/000298910x480793
- H. Cakalli, Forward continuity, J. Comput. Anal. Appl. 13(2) (2011), 225-230.
- H. Cakalli, Statistical ward continuity, Appl. Math. Lett. 24 (2011), 1724-1728. https://doi.org/10.1016/j.aml.2011.04.029
- H. Cakalli, Statistical-quasi-Cauchy sequences, Math. Comput. Modelling 54 (2011), 1620-1624. https://doi.org/10.1016/j.mcm.2011.04.037
- H. Cakalli, Slowly oscillating continuity, Abstr. Appl. Anal. Vol. 2008, Article ID 485706, 5 pages.
- H. Cakalli, δ-quasi-Cauchy sequences, Math. Comput. Modelling 53 (2011), 397-401. https://doi.org/10.1016/j.mcm.2010.09.010
- H. Cakalli, A new approach to statistically quasi Cauchy sequences, Maltepe J. Math. 1(1) (2019), 1-8.
- H. Cakalli, I. Canak, and M. Dik, ∆-quasi-slowly oscillating continuity, Appl. Math. Comput. 216 (2010), 2865-2868. https://doi.org/10.1016/j.amc.2010.03.137
- H. Cakalli and B. Hazarika, Ideal-quasi-Cauchy sequences, J. Ineq. Appl. 2012, Article 234, (2012).
- H. Cakalli and A. Sonmez, Slowly oscillating continuity in abstract metric spaces, Filomat 27(5) (2013), 925-930. https://doi.org/10.2298/FIL1305925C
- I. Canak and U. Totur, A condition under which slow oscillation of a sequence follows from Cesaro summability of its generator sequence, Appl. Math. Comput. 216 (2010), 1618-1623. https://doi.org/10.1016/j.amc.2010.03.017
- H. Cartan, Filters et ultrafilters, C. R. Acad. Sci. Paris 205 (1937), 777-779.
- R. Chugh and S. Rathi, Weakly compatible maps in FNSs, Universitatea Din Bacan Studh Si Cercet Ari Stihntifice Seria, Matehatica 15 (2005), 31-38.
- S. C. Cheng and J. M. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc. 86 (1994), 429-436.
- P. Debnath, Lacunary ideal convergence in intuitionistic fuzzy normed linear spaces, Comput. Math. Appl. 63 (2012), 708-715. https://doi.org/10.1016/j.camwa.2011.11.034
- P. Debnath, Results on lacunary difference ideal convergence in intuitionistic fuzzy normed linear spaces, J. Intell. Fuzzy Syst. 28(3) (2015), 1299-1306. https://doi.org/10.3233/IFS-141415
- P. Debnath, A generalized statistical convergence in intuitionistic fuzzy n-normed linear spaces, Ann. Fuzzy Math. Inform. 12(4) (2016), 559-572.
- M. Dik and I. Canak, New Types of Continuities, Abstr. Appl. Anal. Vol. 2010, Article ID 258980, 6 pages.
- H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244. https://doi.org/10.4064/cm-2-3-4-241-244
- C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets Syst. 48 (1992), 239-248. https://doi.org/10.1016/0165-0114(92)90338-5
- J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313. https://doi.org/10.1524/anly.1985.5.4.301
- A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets Syst. 99 (1997), 365-368.
- G. H. Hardy, Theorems relating to the summability and slowly oscillating series, Proc. London Math. Soc. 8(2) (1910), 310-320.
- B. Hazarika, Ideal convergence in locally solid Riesz spaces, Filomat 28(4) (2014), 797-809. https://doi.org/10.2298/FIL1404797H
- B. Hazarika, Ideally slowly oscillating sequences, Bol. Soc. Paran. Mat. 34 (2016), 129-139. https://doi.org/10.5269/bspm.v34i1.24932
- B. Hazarika, On ideal convergent sequences in fuzzy normed linear spaces, Afr. Mat. 25(4) (2014), 987-999. https://doi.org/10.1007/s13370-013-0168-0
- B. Hazarika, A. Alotaibi and S. A. Mohiuddine, Statistical convergence in measure for double sequences of fuzzy-valued functions, Soft Computing 24 (2020), 6613-6622. https://doi.org/10.1007/s00500-020-04805-y
- B. Hazarika and V. Kumar, Fuzzy real valued I-convergent double sequences in fuzzy normed spaces, J. Intell. Fuzzy Syst. 26(5) (2014), 2323-2332. https://doi.org/10.3233/IFS-130905
- U. Kadak and S. A. Mohiuddine, Generalized statistically almost convergence based on the difference operator which includes the (p, q)-gamma function, Results Math. (2018) 73:9. https://doi.org/10.1007/s00025-018-0789-6
- O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets Syst. 12 (1984), 215-229. https://doi.org/10.1016/0165-0114(84)90069-1
- A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets Syst. 12 (1984), 143-154. https://doi.org/10.1016/0165-0114(84)90034-4
- N. Konwar, B. Davvaz and P. Debnath, Approximation of new bounded operators in intuitionistic fuzzy n-Banach spaces, J. Intell. Fuzzy Syst. 35(6) (2018), 6301-6312. https://doi.org/10.3233/JIFS-181094
- N. Konwar, B. Davvaz and P. Debnath, Results on generalized intuitionistic fuzzy hypergroupoids, J. Intell. Fuzzy Syst. 36(3) (2019), 2571-2580. https://doi.org/10.3233/JIFS-181522
- N. Konwar and P. Debnath, Continuity and Banach contraction principle in intuitionistic fuzzy n-normed linear spaces, J. Intell. Fuzzy Syst. 33(4) (2017), 2363-2373. https://doi.org/10.3233/JIFS-17500
- P. Kostyrko, T. Salat and W. Wilczynski, I-convergence, Real Anal. Exchange 26(2) (2000-2001), 669-686. https://doi.org/10.2307/44154069
- I. Kramosi and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 326-334.
- S. A. Mohiuddine and B. A. S. Alamri, Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 113(3) (2019), 1955-1973. https://doi.org/10.1007/s13398-018-0591-z
- S. A. Mohiuddine, A. Asiri and B. Hazarika, Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approximation theorems, Int. J. Gen. Syst. 48(5) (2019), 492-506. https://doi.org/10.1080/03081079.2019.1608985
- S. A. Mohiuddine and B. Hazarika, Some classes of ideal convergent sequences and generalized difference matrix operator, Filomat 31(6) (2017), 1827-1834. https://doi.org/10.2298/FIL1706827M
- S. A. Mohiuddine, B. Hazarika and M. A. Alghamdi, Ideal relatively uniform convergence with Korovkin and Voronovskaya types approximation theorems, Filomat 33(14) (2019), 4549-4560. https://doi.org/10.2298/fil1914549m
- F. Nuray and W. H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245 (2000), 513-527. https://doi.org/10.1006/jmaa.2000.6778
- T. Salat, B. C. Tripathy and M. Zimon, On some properties of I-convergence, Tatra Mt. Math. Publ. 28 (2004), 279-286.
- C. Sencimen and S. Pehlivan, Statistical convergence in fuzzy normed linear spaces, Fuzzy Sets Syst. 159 (2008), 361-370. https://doi.org/10.1016/j.fss.2007.06.008
- H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73-74. https://doi.org/10.4064/cm-2-2-98-108
- I. Taylan, Abel statistical delta quasi Cauchy sequences of real numbers, Maltepe J. Math. 1(1) (2019), 18-23.
- R. W. Vallin, Creating slowly oscillating sequences and slowly oscillating continuous functions, With an appendix by Vallin and Cakalli, Acta Math. Univ. Comenian (N.S.) 80(1) (2011), 71-78.
- J. Xiao and X. Zhu, On linearly topological structure and property of fuzzy normed linear space, Fuzzy Sets Syst. 125 (2002), 153-161. https://doi.org/10.1016/S0165-0114(00)00136-6
- L. A. Zadeh, Fuzzy Sets, Inform. Control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
- A. Zygmund, Trigonometrical Series, vol. 5 of Monografyas de Matematicas, Warszawa-Lwow, 1935.