DOI QR코드

DOI QR Code

NEW KINDS OF CONTINUITY IN FUZZY NORMED SPACES

  • Hazarika, Bipan (Department of Mathematics, Gauhati University) ;
  • Mohiuddine, S.A. (Department of General Required Courses, Mathematics, Faculty of Applied Studies, King Abdulaziz University, Operator Theory and Applications Research Group, Department of Mathematics, King Abdulaziz University)
  • Received : 2021.05.06
  • Accepted : 2021.06.13
  • Published : 2021.09.25

Abstract

We first define the notions of filter continuous, filter sequentially continuous and filter strongly continuous in the framework of fuzzy normed space (FNS), and then we introduce the notion of filter slowly oscillating sequences in the setting of FNS and shows that this notion is stronger than slowly oscillating sequences. Further, we define the concept of filter slowly oscillating continuous functions, filter Cesàro slowly oscillating sequences as well as some other related notions in the aforementioned space and investigate several related results.

Keywords

References

  1. M. Alimohammady and M. Roohi, Compactness in fuzzy minimal spaces, Chaos Solitons Fractals 28 (2006), 906-912. https://doi.org/10.1016/j.chaos.2005.08.043
  2. C. Belen and S. A. Mohiuddine, Generalized weighted statistical convergence and application, Appl. Math. Comput. 219 (2013), 9821-9826. https://doi.org/10.1016/j.amc.2013.03.115
  3. N. L. Braha, H. M. Srivastava, S. A. Mohiuddine, A Korovkin's type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallee Poussin mean, Appl. Math. Comput. 228 (2014) 162-169. https://doi.org/10.1016/j.amc.2013.11.095
  4. D. Burton and J. Coleman, Quasi-Cauchy Sequences, Amer. Math. Monthly 117(4) (2010), 328-333. https://doi.org/10.4169/000298910x480793
  5. H. Cakalli, Forward continuity, J. Comput. Anal. Appl. 13(2) (2011), 225-230.
  6. H. Cakalli, Statistical ward continuity, Appl. Math. Lett. 24 (2011), 1724-1728. https://doi.org/10.1016/j.aml.2011.04.029
  7. H. Cakalli, Statistical-quasi-Cauchy sequences, Math. Comput. Modelling 54 (2011), 1620-1624. https://doi.org/10.1016/j.mcm.2011.04.037
  8. H. Cakalli, Slowly oscillating continuity, Abstr. Appl. Anal. Vol. 2008, Article ID 485706, 5 pages.
  9. H. Cakalli, δ-quasi-Cauchy sequences, Math. Comput. Modelling 53 (2011), 397-401. https://doi.org/10.1016/j.mcm.2010.09.010
  10. H. Cakalli, A new approach to statistically quasi Cauchy sequences, Maltepe J. Math. 1(1) (2019), 1-8.
  11. H. Cakalli, I. Canak, and M. Dik, ∆-quasi-slowly oscillating continuity, Appl. Math. Comput. 216 (2010), 2865-2868. https://doi.org/10.1016/j.amc.2010.03.137
  12. H. Cakalli and B. Hazarika, Ideal-quasi-Cauchy sequences, J. Ineq. Appl. 2012, Article 234, (2012).
  13. H. Cakalli and A. Sonmez, Slowly oscillating continuity in abstract metric spaces, Filomat 27(5) (2013), 925-930. https://doi.org/10.2298/FIL1305925C
  14. I. Canak and U. Totur, A condition under which slow oscillation of a sequence follows from Cesaro summability of its generator sequence, Appl. Math. Comput. 216 (2010), 1618-1623. https://doi.org/10.1016/j.amc.2010.03.017
  15. H. Cartan, Filters et ultrafilters, C. R. Acad. Sci. Paris 205 (1937), 777-779.
  16. R. Chugh and S. Rathi, Weakly compatible maps in FNSs, Universitatea Din Bacan Studh Si Cercet Ari Stihntifice Seria, Matehatica 15 (2005), 31-38.
  17. S. C. Cheng and J. M. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc. 86 (1994), 429-436.
  18. P. Debnath, Lacunary ideal convergence in intuitionistic fuzzy normed linear spaces, Comput. Math. Appl. 63 (2012), 708-715. https://doi.org/10.1016/j.camwa.2011.11.034
  19. P. Debnath, Results on lacunary difference ideal convergence in intuitionistic fuzzy normed linear spaces, J. Intell. Fuzzy Syst. 28(3) (2015), 1299-1306. https://doi.org/10.3233/IFS-141415
  20. P. Debnath, A generalized statistical convergence in intuitionistic fuzzy n-normed linear spaces, Ann. Fuzzy Math. Inform. 12(4) (2016), 559-572.
  21. M. Dik and I. Canak, New Types of Continuities, Abstr. Appl. Anal. Vol. 2010, Article ID 258980, 6 pages.
  22. H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244. https://doi.org/10.4064/cm-2-3-4-241-244
  23. C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets Syst. 48 (1992), 239-248. https://doi.org/10.1016/0165-0114(92)90338-5
  24. J. A. Fridy, On statistical convergence, Analysis 5 (1985), 301-313. https://doi.org/10.1524/anly.1985.5.4.301
  25. A. George and P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets Syst. 99 (1997), 365-368.
  26. G. H. Hardy, Theorems relating to the summability and slowly oscillating series, Proc. London Math. Soc. 8(2) (1910), 310-320.
  27. B. Hazarika, Ideal convergence in locally solid Riesz spaces, Filomat 28(4) (2014), 797-809. https://doi.org/10.2298/FIL1404797H
  28. B. Hazarika, Ideally slowly oscillating sequences, Bol. Soc. Paran. Mat. 34 (2016), 129-139. https://doi.org/10.5269/bspm.v34i1.24932
  29. B. Hazarika, On ideal convergent sequences in fuzzy normed linear spaces, Afr. Mat. 25(4) (2014), 987-999. https://doi.org/10.1007/s13370-013-0168-0
  30. B. Hazarika, A. Alotaibi and S. A. Mohiuddine, Statistical convergence in measure for double sequences of fuzzy-valued functions, Soft Computing 24 (2020), 6613-6622. https://doi.org/10.1007/s00500-020-04805-y
  31. B. Hazarika and V. Kumar, Fuzzy real valued I-convergent double sequences in fuzzy normed spaces, J. Intell. Fuzzy Syst. 26(5) (2014), 2323-2332. https://doi.org/10.3233/IFS-130905
  32. U. Kadak and S. A. Mohiuddine, Generalized statistically almost convergence based on the difference operator which includes the (p, q)-gamma function, Results Math. (2018) 73:9. https://doi.org/10.1007/s00025-018-0789-6
  33. O. Kaleva and S. Seikkala, On fuzzy metric spaces, Fuzzy Sets Syst. 12 (1984), 215-229. https://doi.org/10.1016/0165-0114(84)90069-1
  34. A. K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets Syst. 12 (1984), 143-154. https://doi.org/10.1016/0165-0114(84)90034-4
  35. N. Konwar, B. Davvaz and P. Debnath, Approximation of new bounded operators in intuitionistic fuzzy n-Banach spaces, J. Intell. Fuzzy Syst. 35(6) (2018), 6301-6312. https://doi.org/10.3233/JIFS-181094
  36. N. Konwar, B. Davvaz and P. Debnath, Results on generalized intuitionistic fuzzy hypergroupoids, J. Intell. Fuzzy Syst. 36(3) (2019), 2571-2580. https://doi.org/10.3233/JIFS-181522
  37. N. Konwar and P. Debnath, Continuity and Banach contraction principle in intuitionistic fuzzy n-normed linear spaces, J. Intell. Fuzzy Syst. 33(4) (2017), 2363-2373. https://doi.org/10.3233/JIFS-17500
  38. P. Kostyrko, T. Salat and W. Wilczynski, I-convergence, Real Anal. Exchange 26(2) (2000-2001), 669-686. https://doi.org/10.2307/44154069
  39. I. Kramosi and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 326-334.
  40. S. A. Mohiuddine and B. A. S. Alamri, Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 113(3) (2019), 1955-1973. https://doi.org/10.1007/s13398-018-0591-z
  41. S. A. Mohiuddine, A. Asiri and B. Hazarika, Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approximation theorems, Int. J. Gen. Syst. 48(5) (2019), 492-506. https://doi.org/10.1080/03081079.2019.1608985
  42. S. A. Mohiuddine and B. Hazarika, Some classes of ideal convergent sequences and generalized difference matrix operator, Filomat 31(6) (2017), 1827-1834. https://doi.org/10.2298/FIL1706827M
  43. S. A. Mohiuddine, B. Hazarika and M. A. Alghamdi, Ideal relatively uniform convergence with Korovkin and Voronovskaya types approximation theorems, Filomat 33(14) (2019), 4549-4560. https://doi.org/10.2298/fil1914549m
  44. F. Nuray and W. H. Ruckle, Generalized statistical convergence and convergence free spaces, J. Math. Anal. Appl. 245 (2000), 513-527. https://doi.org/10.1006/jmaa.2000.6778
  45. T. Salat, B. C. Tripathy and M. Zimon, On some properties of I-convergence, Tatra Mt. Math. Publ. 28 (2004), 279-286.
  46. C. Sencimen and S. Pehlivan, Statistical convergence in fuzzy normed linear spaces, Fuzzy Sets Syst. 159 (2008), 361-370. https://doi.org/10.1016/j.fss.2007.06.008
  47. H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73-74. https://doi.org/10.4064/cm-2-2-98-108
  48. I. Taylan, Abel statistical delta quasi Cauchy sequences of real numbers, Maltepe J. Math. 1(1) (2019), 18-23.
  49. R. W. Vallin, Creating slowly oscillating sequences and slowly oscillating continuous functions, With an appendix by Vallin and Cakalli, Acta Math. Univ. Comenian (N.S.) 80(1) (2011), 71-78.
  50. J. Xiao and X. Zhu, On linearly topological structure and property of fuzzy normed linear space, Fuzzy Sets Syst. 125 (2002), 153-161. https://doi.org/10.1016/S0165-0114(00)00136-6
  51. L. A. Zadeh, Fuzzy Sets, Inform. Control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
  52. A. Zygmund, Trigonometrical Series, vol. 5 of Monografyas de Matematicas, Warszawa-Lwow, 1935.