• 제목/요약/키워드: operator equation

Search Result 377, Processing Time 0.022 seconds

AN ERROR ANALYSIS FOR A CERTAIN CLASS OF ITERATIVE METHODS

  • Argyros, Ioannis K.
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.743-753
    • /
    • 2001
  • We provide local convergence results in affine form for inexact Newton-like as well as quasi-Newton iterative methods in a Banach space setting. We use hypotheses on the second or on the first and mth Frechet-derivative (m≥2 an integer) of the operator involved. Our results allow a wider choice of starting points since our radius of convergence can be larger than the corresponding one given in earlier results using hypotheses on the first-Frechet-derivative only. A numerical example is provided to illustrate this fact. Our results apply when the method is, for example, a difference Newton-like or update-Newton method. Furthermore, our results have direct applications to the solution of autonomous differential equations.

Rational Approximation of Multiple Input Delay Systems Using the Hankel Singular Values Vectors (한켈특이치와 특이벡터를 이용한 복수 입력 시간지연 시스템의 유리근사화)

  • 황이철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.299-304
    • /
    • 1996
  • This paper studies the rational approximation of multiple input delay systems using the Hankel singular values and vectors, which are the soultion of a transcendental equation. Rational approximatants are obtained from output normal realizations which are constructed by the Hankel singular values and vectors. Consequently, it is shown that rational approximants by output normal realization preserve intrinsic properties of time delay systems than Pade approximants.

  • PDF

GENERALIZED Δ-COHERENT PAIRS

  • Kwon, K.H.;Lee, J.H.;F. Marcellan
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.6
    • /
    • pp.977-994
    • /
    • 2004
  • A pair of quasi-definite linear functionals {u$_{0}$, u$_1$} is a generalized $\Delta$-coherent pair if monic orthogonal polynomials (equation omitted) relative to u$_{0}$ and u$_1$, respectively, satisfy a relation (equation omitted) where $\sigma$$_{n}$ and T$_{n}$ are arbitrary constants and $\Delta$p = p($\chi$+1) - p($\chi$) is the difference operator. We show that if {u$_{0}$, u$_1$} is a generalized $\Delta$-coherent pair, then u$_{0}$ and u$_{1}$ must be discrete-semiclassical linear functionals. We also find conditions under which either u$_{0}$ or u$_1$ is discrete-classical.ete-classical.

ON THE "TERRA INCOGNITA" FOR THE NEWTON-KANTROVICH METHOD WITH APPLICATIONS

  • Argyros, Ioannis Konstantinos;Cho, Yeol Je;George, Santhosh
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.251-266
    • /
    • 2014
  • In this paper, we use Newton's method to approximate a locally unique solution of an equation in Banach spaces and introduce recurrent functions to provide a weaker semilocal convergence analysis for Newton's method than before [1]-[13], in some interesting cases, provided that the Fr$\acute{e}$chet-derivative of the operator involved is p-H$\ddot{o}$lder continuous (p${\in}$(0, 1]). Numerical examples involving two boundary value problems are also provided.

Solving Time-dependent Schrödinger Equation Using Gaussian Wave Packet Dynamics

  • Lee, Min-Ho;Byun, Chang Woo;Choi, Nark Nyul;Kim, Dae-Soung
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1269-1278
    • /
    • 2018
  • Using the thawed Gaussian wave packets [E. J. Heller, J. Chem. Phys. 62, 1544 (1975)] and the adaptive reinitialization technique employing the frame operator [L. M. Andersson et al., J. Phys. A: Math. Gen. 35, 7787 (2002)], a trajectory-based Gaussian wave packet method is introduced that can be applied to scattering and time-dependent problems. This method does not require either the numerical multidimensional integrals for potential operators or the inversion of nearly-singular matrices representing the overlap of overcomplete Gaussian basis functions. We demonstrate a possibility that the method can be a promising candidate for the time-dependent $Schr{\ddot{o}}dinger$ equation solver by applying to tunneling, high-order harmonic generation, and above-threshold ionization problems in one-dimensional model systems. Although the efficiency of the method is confirmed in one-dimensional systems, it can be easily extended to higher dimensional systems.

LONG-TIME BEHAVIOR OF SOLUTIONS TO A NONLOCAL QUASILINEAR PARABOLIC EQUATION

  • Thuy, Le Thi;Tinh, Le Tran
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1365-1388
    • /
    • 2019
  • In this paper we consider a class of nonlinear nonlocal parabolic equations involving p-Laplacian operator where the nonlocal quantity is present in the diffusion coefficient which depends on $L^p$-norm of the gradient and the nonlinear term is of polynomial type. We first prove the existence and uniqueness of weak solutions by combining the compactness method and the monotonicity method. Then we study the existence of global attractors in various spaces for the continuous semigroup generated by the problem. Finally, we investigate the existence and exponential stability of weak stationary solutions to the problem.

EXISTENCE AND APPROXIMATE SOLUTION FOR THE FRACTIONAL VOLTERRA FREDHOLM INTEGRO-DIFFERENTIAL EQUATION INVOLVING ς-HILFER FRACTIONAL DERIVATIVE

  • Awad T. Alabdala;Alan jalal abdulqader;Saleh S. Redhwan;Tariq A. Aljaaidi
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.4
    • /
    • pp.989-1004
    • /
    • 2023
  • In this paper, we are motivated to evaluate and investigate the necessary conditions for the fractional Volterra Fredholm integro-differential equation involving the ς-Hilfer fractional derivative. The given problem is converted into an equivalent fixed point problem by introducing an operator whose fixed points coincide with the solutions to the problem at hand. The existence and uniqueness results for the given problem are derived by applying Krasnoselskii and Banach fixed point theorems respectively. Furthermore, we investigate the convergence of approximated solutions to the same problem using the modified Adomian decomposition method. An example is provided to illustrate our findings.

SHAPING A NOZZLE WITH A CENTRAL BODY (스파이크 노즐 설계)

  • KIM C. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.293-298
    • /
    • 2005
  • We calculate the coordinates of an axisymmetric nozzle with a central body. This nozzle ensures a transonic flow with a plane sound surface, which is orthogonal to the symmetry axis and has a wall kink at the sonic point, The Chaplygin transformation in the subsonic part of the flow leads the Dirichlet problem for a system of nonlinear equations. The definition domain of the solution in the velocity-hodograph plane is taken as a rectangle. This enables one to obtain the nozzle with a monotonic distribution of velocity along its subsonic part. In the nonlinear differential equation, the linear Chaplygin operator for plane flows is separated, which allows the iterative calculation of the solution. The supersonic part of the nozzle is calculated under the assumption that the flow at the nozzle exit is uniform and parallel to the symmetry axis; i.e., the supersonic jet outflows to the submerged space with the same pressure. The calculation is performed by the characteristic method. The exact solution of Tricomi equation for near-sonic flows with the straight sonic line is used to 'move away' the sound plane. The velocity distribution alone the supersonic part of the nozzle is also monotonic, which ensures the absence of the boundary-layer separation and, therefore, the adequacy of the ideal-gas model. calculations show that the flow in the supersonic part of the nozzle is continuous (compression shocks are absent)

  • PDF

Inverse problem for semilinear control systems

  • Park, Jong-Yeoul;Jeong, Jin-Mun;Kwun, Young-Chel
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.603-611
    • /
    • 1996
  • Let consider the following problem: find an element u(t) in a Banach space U from the equation $$ x'(t) = Ax(t) + f(t,x(t)) + \Phi_0 u(t), 0 \leq t \leq T $$ with initial and terminal conditions $$ x(0) = 0, x(T) = \phi $$ in a Banach space X where $\phi \in D(A)$. This problem is a kind of control engineering inverse problem and contains nonlinear term, so that it is difficult and interesting. Thee proof main result in this paper is based on the Fredholm property of [1] in section 3. Similar considerations of linear system have been dealt with in many references. Among these literatures, Suzuki[5] introduced this problem for heat equation with unknown spatially-varing conductivity. Nakagiri and Yamamoto[2] considered the identifiability problem, which A is a unknown operator to be identified, where the system is described by a linear retarded functional differential equation. We can also apply to determining the magnitude of the control set for approximate controllability if X is a reflexive space, i.e., we can consider whether a dense subset of X is covered by reachable set in section 4.

  • PDF

A Study on Eigen-properties of a 3-Dim. Resonant Cavity by Krylov-Schur Iteration Method (Krylov-Schur 순환법을 이용한 3-차원 원통구조 도파관의 고유특성 연구)

  • Kim, Yeong Min;Lim, Jong Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.142-148
    • /
    • 2014
  • Krylov-Schur iteration method has been applied to the 3-Dim. resonant cavity of a cylindrical form. The vector Helmholtz equation has been analysed for the resonant field strength in homogeneous media by FEM. An eigen-equation has been constructed from element equations basing on tangential edges of the tetrahedra element. This equation made up of two square matrices associated with the curl-curl form of the Helmholtz operator. By performing Krylov-Schur iteration loops on them, Eigen-values and their modes have been determined from the diagonal components of the Schur matrices and its transforming matrices. Eigen-pairs as a result have been revealed visually in the schematic representations. The spectra have been compared with each other to identify the effect of boundary conditions.