DOI QR코드

DOI QR Code

Solving Time-dependent Schrödinger Equation Using Gaussian Wave Packet Dynamics

  • Lee, Min-Ho (School of Liberal Arts and Teacher Training, Kumoh National Institute of Technology) ;
  • Byun, Chang Woo (School of Liberal Arts and Teacher Training, Kumoh National Institute of Technology) ;
  • Choi, Nark Nyul (School of Liberal Arts and Teacher Training, Kumoh National Institute of Technology) ;
  • Kim, Dae-Soung (Department of Global Education, Gyeonggi College of Science and Technology)
  • Received : 2018.08.28
  • Published : 2018.11.15

Abstract

Using the thawed Gaussian wave packets [E. J. Heller, J. Chem. Phys. 62, 1544 (1975)] and the adaptive reinitialization technique employing the frame operator [L. M. Andersson et al., J. Phys. A: Math. Gen. 35, 7787 (2002)], a trajectory-based Gaussian wave packet method is introduced that can be applied to scattering and time-dependent problems. This method does not require either the numerical multidimensional integrals for potential operators or the inversion of nearly-singular matrices representing the overlap of overcomplete Gaussian basis functions. We demonstrate a possibility that the method can be a promising candidate for the time-dependent $Schr{\ddot{o}}dinger$ equation solver by applying to tunneling, high-order harmonic generation, and above-threshold ionization problems in one-dimensional model systems. Although the efficiency of the method is confirmed in one-dimensional systems, it can be easily extended to higher dimensional systems.

Keywords

References

  1. B. Walker, B. Sheehy, L. F. DiMauro, P. Agostini, K. J. Schafer and K. C. Kulander, Phys. Rev. Lett. 73, 1227 (1994). https://doi.org/10.1103/PhysRevLett.73.1227
  2. B. Sheehy, R. Lafon, M. Widmer, B. Walker, L. F. Di-Mauro, P. A. Agostini and K. C. Kulander, Phys. Rev. A 58, 3942 (1998). https://doi.org/10.1103/PhysRevA.58.3942
  3. M. Weckenbrock, D. Zeidler, A. Staudte, T. Weber, M. Schoffer, M. Meckel, S. Kammer, M. Smolarski, O. Jagutzki, V. R. Bhardwaj, D. M. Rayner, D. M. Villeneuve, P. B. Corkum and R. Dorner, Phys. Rev. Lett. 92, 213002 (2004). https://doi.org/10.1103/PhysRevLett.92.213002
  4. A. Rudenko, K. Zrost, B. Feuerstein, V. L. B. de Jesus, C. D. Schroter, R. Moshammer and J. Ullrich, Phys. Rev. Lett. 93, 253001 (2004). https://doi.org/10.1103/PhysRevLett.93.253001
  5. M. Schultze, M. Fie, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, T. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdorfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz and V. S. Yakovlev, Science 328, 1658 (2010). https://doi.org/10.1126/science.1189401
  6. K. Miyazaki and H. Sakai, J. Phys. B: At. Mol. Opt. Phys. 25, L83 (1992). https://doi.org/10.1088/0953-4075/25/3/006
  7. N. Sarukura, K. Hata, T. Adachi, R. Nodomi, M.Watanabe and S. Watanabe, Phys. Rev. A 43, 1669 (1991). https://doi.org/10.1103/PhysRevA.43.1669
  8. J. K. Crane, M. D. Perry, S. Herman and R. W. Falcone, Opt. Lett. 17, 1256 (1992). https://doi.org/10.1364/OL.17.001256
  9. P. Agostini, F. Fabre, G. Mainfray, G. Petite and N. K. Rahman, Phys. Rev. Lett. 42, 1127 (1979). https://doi.org/10.1103/PhysRevLett.42.1127
  10. W. Nicklich, H. Kumpfmuller, H. Walther, X. Tang, H. Xu and P. Lambropoulos, Phys. Rev. Lett. 69, 3455 (1992). https://doi.org/10.1103/PhysRevLett.69.3455
  11. M. Bashkansky, P. H. Bucksbaum and D. W. Schumacher, Phys. Rev. Lett. 60, 2458 (1988). https://doi.org/10.1103/PhysRevLett.60.2458
  12. A. L'Huillier, L. A. Lompre, G. Mainfray and C. Manus, Phys. Rev. Lett. 48, 1814 (1982). https://doi.org/10.1103/PhysRevLett.48.1814
  13. A. L'Huillier, L. A. Lompre, G. Mainfray and C. Manus, Phys. Rev. A 27, 2503 (1983). https://doi.org/10.1103/PhysRevA.27.2503
  14. D. N. Fittinghoff, P. R. Bolton, B. Chang and K. C. Kulander, Phys. Rev. Lett. 69, 2642 (1992). https://doi.org/10.1103/PhysRevLett.69.2642
  15. J. B. Watson, A. Sanpera, D. G. Lappas, P. L. Knight and K. Burnett, Phys. Rev. Lett. 78, 1884 (1997). https://doi.org/10.1103/PhysRevLett.78.1884
  16. R. Lafon, J. L. Chaloupka, B. Sheehy, P. M. Paul, P. Agostini, K. C. Kulander and L. F. DiMauro, Phys. Rev. Lett. 86, 2762 (2001). https://doi.org/10.1103/PhysRevLett.86.2762
  17. M. A. Lysaght, H. W. van der Hart and P. G. Burke, Phys. Rev. A 79, 053411 (2009). https://doi.org/10.1103/PhysRevA.79.053411
  18. M. A. Lysaght, S. Hutchinson and H. W. van der Hart, New J. Phys. 11, 093014 (2009). https://doi.org/10.1088/1367-2630/11/9/093014
  19. P. G. Burke and V. M. Burke, J. Phys. B: At. Mol. Opt. Phys. 30, L383 (1997). https://doi.org/10.1088/0953-4075/30/11/002
  20. L. A. A. Nikolopoulos, J. S. Parker and K. T. Taylor, Phys. Rev. A 78, 063420 (2008). https://doi.org/10.1103/PhysRevA.78.063420
  21. L. Moore, M. Lysaght, L. Nikolopoulos, J. Parker, H. van der Hart and K. Taylor, J. Mod. Opt. 58, 1132 (2011). https://doi.org/10.1080/09500340.2011.559315
  22. X. Guan, O. Zatsarinny, K. Bartschat, B. I. Schneider, J. Feist and C. J. Noble, Phys. Rev. A 76, 053411 (2007). https://doi.org/10.1103/PhysRevA.76.053411
  23. X. Guan, C. J. Noble, O. Zatsarinny, K. Bartschat and B. I. Schneider, Phys. Rev. A 78, 053402 (2008). https://doi.org/10.1103/PhysRevA.78.053402
  24. E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984). https://doi.org/10.1103/PhysRevLett.52.997
  25. I. Burghardt, H-D. Meyer and L. S. Cederbaum, J. Chem. Phys. 111, 2927 (1999). https://doi.org/10.1063/1.479574
  26. I. Burghardt, K. Giri and G. A. Worth, J. Chem. Phys. 129, 174104 (2008). https://doi.org/10.1063/1.2996349
  27. S. Sawada, R. Heather, B. Jackson and H. Metiu, J. Chem. Phys. 83, 3009 (1985). https://doi.org/10.1063/1.449204
  28. G. A. Worth and I. Burghardt, Chem. Phys. Lett. 368, 502 (2003). https://doi.org/10.1016/S0009-2614(02)01920-6
  29. D. V. Shalashilin and M. S. Child, Chem. Phys. 304, 103 (2004). https://doi.org/10.1016/j.chemphys.2004.06.013
  30. D. V. Shalashilin and M. S. Child, J. Chem. Phys. 128, 054102 (2008). https://doi.org/10.1063/1.2828509
  31. C. Symonds, J.Wu, M. Ronto, C. Zagoya, C. Figueira de Morisson Faria and D. V. Shalashilin, Phys. Rev. A 91, 023427 (2015). https://doi.org/10.1103/PhysRevA.91.023427
  32. X. Kong, A. Markmann and V. S. Batista, J. Phys. Chem. A 120, 3260 (2016), pMID: 26845486. https://doi.org/10.1021/acs.jpca.5b12192
  33. E. J. Heller, J. Chem. Phys. 62, 1544 (1975). https://doi.org/10.1063/1.430620
  34. J. Qian and L. Ying, J. Comput. Phys. 229, 7848 (2010). https://doi.org/10.1016/j.jcp.2010.06.043
  35. L. M. Andersson, J. Chem. Phys. 115, 1158 (2001). https://doi.org/10.1063/1.1380204
  36. L. M. Andersson, J. berg, H. O. Karlsson and O. Goscinski, J. Phys. A: Math. Gen. 35, 7787 (2002). https://doi.org/10.1088/0305-4470/35/36/307
  37. I. Daubechies, in Ten Lectures on Wavelets, Vol. 61 (SIAM, Philadelphia, 1992), Chap. 3.
  38. H. Bachau, E. Cormier, P. Decleva, J. E. Hansen and F. Martn, Rep. Prog. Phys. 64, 1815 (2001). https://doi.org/10.1088/0034-4885/64/12/205
  39. J. Crank and P. Nicolson, Adv. Comput. Math. 6, 207 (1996). https://doi.org/10.1007/BF02127704
  40. K. Burnett, V. C. Reed, J. Cooper and P. L. Knight, Phys. Rev. A 45, 3347 (1992). https://doi.org/10.1103/PhysRevA.45.3347
  41. A. Gordon, R. Santra and F. X. Kartner, Phys. Rev. A 72, 063411 (2005). https://doi.org/10.1103/PhysRevA.72.063411
  42. C. Zagoya, C-M. Goletz, F. Grossmann and J-M. Rost, New J. Phys. 14, 093050 (2012). https://doi.org/10.1088/1367-2630/14/9/093050
  43. J. Javanainen, J. H. Eberly and Q. Su, Phys. Rev. A 38, 3430 (1988). https://doi.org/10.1103/PhysRevA.38.3430
  44. Q. Su and J. H. Eberly, Phys. Rev. A 44, 5997 (1991). https://doi.org/10.1103/PhysRevA.44.5997
  45. G. G. Paulus, W. Nicklich, H. Xu, P. Lambropoulos and H. Walther, Phys. Rev. Lett. 72, 2851 (1994). https://doi.org/10.1103/PhysRevLett.72.2851
  46. P. Descouvemont and D. Baye, Rep. Prog. Phys. 73, 036301 (2010). https://doi.org/10.1088/0034-4885/73/3/036301
  47. R. Dorner, T. Weber, M. Weckenbrock, A. Staudte, M. Hattass, H. Schmidt-Bocking, R. Moshammer and J. Ullrich, Adv. Atom. Mol. Opt. Phys. 48, 1 (2002).
  48. J. Thijssen, Computational Physics, 2nd ed. (Cambridge University Press, 2007).

Cited by

  1. Coherent state based solutions of the time-dependent Schrödinger equation: hierarchy of approximations to the variational principle vol.40, pp.1, 2021, https://doi.org/10.1080/0144235x.2020.1823168