Browse > Article
http://dx.doi.org/10.4134/JKMS.2004.41.6.977

GENERALIZED Δ-COHERENT PAIRS  

Kwon, K.H. (Division of Applied Mathematic KAIST)
Lee, J.H. (Department of Mathematical Science SNU)
F. Marcellan (Departmento de Matematicas Universidad Carlos III de Madrid Avda)
Publication Information
Journal of the Korean Mathematical Society / v.41, no.6, 2004 , pp. 977-994 More about this Journal
Abstract
A pair of quasi-definite linear functionals {u$_{0}$, u$_1$} is a generalized $\Delta$-coherent pair if monic orthogonal polynomials (equation omitted) relative to u$_{0}$ and u$_1$, respectively, satisfy a relation (equation omitted) where $\sigma$$_{n}$ and T$_{n}$ are arbitrary constants and $\Delta$p = p($\chi$+1) - p($\chi$) is the difference operator. We show that if {u$_{0}$, u$_1$} is a generalized $\Delta$-coherent pair, then u$_{0}$ and u$_{1}$ must be discrete-semiclassical linear functionals. We also find conditions under which either u$_{0}$ or u$_1$ is discrete-classical.ete-classical.
Keywords
discrete orthogonal polynomials; $\Delta$-coherent pairs;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 F. Marcellan and J. C. Petronilho, Orthogonal polynomials and coherent pairs: the classical case, Indag. Math. (N. S.) 6(3) (1995), 287–307.   DOI   ScienceOn
2 F. Marcellan, J. C. Petronilho, T. E. Perez, and M. A. Pinar, What is Beyond Coherent Pairs of Orthogonal Polynomials?, J. Comput. Appl. Math. 65 (1995), 267–277.   DOI   ScienceOn
3 F. Marcellan and L. Salto, Discrete semi-classical orthogonal polynomials, J. Difference Equ. Appl. 4 (1998), 463–496   DOI   ScienceOn
4 H. G. Meijer, Coherent pairs and zeros of Sobolev-type orthogonal polynomials, Indag. Math. (N.S.) 4(2) (1993), 163–176.   DOI
5 H. G. Meijer, Determination of all coherent pairs, J. Approx. Theory 89 (1997), 321–343.   DOI   ScienceOn
6 A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials Of A Discrete Variables, Springer-Verlag, Berlin, 1991.
7 K. Pan, On Sobolev orthogonal polynomials with coherent pairs The Jacobi case, J. Comput. Appl. Math. 79 (1997), 249–262.   DOI   ScienceOn
8 M. G. de Bruin and H. G. Meijer, Zeros of orthogonal polynomials in a non-discrete Sobolev space, Ann. Numer. Math., 1995, 233–246.
9 T. S. Chihara, On co-recursive orthogonal polynomials, Proc. Amer. Math. Soc. 8 (1957), 899–905.   DOI   ScienceOn
10 T. S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
11 K. H. Kwon, J. H. Lee, and F. Marcellan, Generalized coherent pairs, J. Math. Anal. Appl. 253 (2) (2001), 482–514.   DOI   ScienceOn
12 A. G. Garcia, F. Marcellan, and L. Salto, A distributional study of discrete classical orthogonal polynomials, J. Comput. Appl. Math. 57 (1995), 147–162.   DOI   ScienceOn
13 A. Iserles, P. E. Koch, S. P. Norsett, and J. M. Sanz-Serna, On Polynomials Orthogonal with respect to Certain Sobolev Inner Products, J. Approx. Theory 65 (1991), 151–175.   DOI
14 K. H. Kwon, D. W. Lee, F. Marcellan, and S. B. Park, On kernel polynomials and self perturbation of orthogonal polynomials, Ann. Mat. Pura Appl. (4) 180 (2) (2001), 127–146.   DOI
15 O. E. Lancaster, Orthogonal polynomials defined by difference equations, Amer. J. Math. 63 (1941), 185–207.   DOI   ScienceOn
16 F. Marcellan, A. Martinez-Finkelshtein, and J. J. Moreno-Balcazar, k-coherence of measures with non-classical weights, In Margarita Mathematica to honnoure J. J. Guadalupe, L Espanol, and J. L. Varona Editors, Servicio Publicaciones Universidad de la Rioja, Logrono, 2001, 77–83.
17 F. Marcellan, T. E. Perez, and M. A. Pinar, Orthogonal polynomials on weighted Sobolev spaces: the semiclassical case, Ann. Numer. Math. 2 (1995), 93–122.
18 I. Area, E. Godoy, and F. Marcellan, $\Delta$-coherent pairs and orthogonal polynomials of a discrete variable, Integral Transforms Spec. Funct. 13 (2002), 1–27.   DOI   ScienceOn
19 W. A. Al-Salam, Characterization Theorems for Orthogonal Polynomials, Orthogonal Polynomials: Theory and Practice (P. Nevai ed.), NATO Sci. Ser. C Math. Phys. Sci. 294 (1990), 1–24.
20 I. Area, E. Godoy, and F. Marcellan, Classification of all $\Delta$-coherent pairs, Integral Transforms Spec. Funct. 9 (1) (2000), 1–18.   DOI