• Title/Summary/Keyword: numerical error

Search Result 2,185, Processing Time 0.03 seconds

ERROR ANALYSIS USING COMPUTER ALGEBRA SYSTEM

  • Song, Kee-Hong
    • East Asian mathematical journal
    • /
    • v.19 no.1
    • /
    • pp.17-26
    • /
    • 2003
  • This paper demonstrates the CAS technique of analyzing the nature and the structure of the numerical error for education and research purposes. This also illustrates the CAS approach in experimenting with the numerical operations in an arbitrary computer number system and also in doing error analysis in a visual manner.

  • PDF

A posteriori error estimator for hierarchical models for elastic bodies with thin domain

  • Cho, Jin-Rae
    • Structural Engineering and Mechanics
    • /
    • v.8 no.5
    • /
    • pp.513-529
    • /
    • 1999
  • A concept of hierarchical modeling, the newest modeling technology, has been introduced in early 1990's. This new technology has a great potential to advance the capabilities of current computational mechanics. A first step to implement this concept is to construct hierarchical models, a family of mathematical models sequentially connected by a key parameter of the problem under consideration and have different levels in modeling accuracy, and to investigate characteristics in their numerical simulation aspects. Among representative model problems to explore this concept are elastic structures such as beam-, arch-, plate- and shell-like structures because the mechanical behavior through the thickness can be approximated with sequential accuracy by varying the order of thickness polynomials in the displacement or stress fields. But, in the numerical, analysis of hierarchical models, two kinds of errors prevail, the modeling error and the numerical approximation error. To ensure numerical simulation quality, an accurate estimation of these two errors is definitely essential. Here, a local a posteriori error estimator for elastic structures with thin domain such as plate- and shell-like structures is derived using the element residuals and the flux balancing technique. This method guarantees upper bounds for the global error, and also provides accurate local error indicators for two types of errors, in the energy norm. Compared to the classical error estimators using the flux averaging technique, this shows considerably reliable and accurate effectivity indices. To illustrate the theoretical results and to verify the validity of the proposed error estimator, representative numerical examples are provided.

On the Suitability of Centered and Upwind-Biased Compact Difference Schemes for Large Eddy Simulations (III) - Dynamic Error Analysis - (LES에서 중심 및 상류 컴팩트 차분기법의 적합성에 관하여 (III) -동적 오차 해석 -)

  • Park, No-Ma;Yoo, Jung-Yul;Choi, Hae-Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.995-1006
    • /
    • 2003
  • The suitability of high-order accurate, centered and upwind-biased compact difference schemes for large eddy simulation is evaluated by a dynamic analysis. Large eddy simulation of isotropic turbulence is performed with various dissipative and non-dissipative schemes to investigate the effect of numerical dissipation on the resolved solutions. It is shown by the present dynamic analysis that upwind schemes reduce the aliasing error and increase the finite differencing error. The existence of optimal upwind scheme that minimizes total numerical error is verified. It is also shown that the finite differencing error from numerical dissipation is the leading source of numerical errors by upwind schemes. Simulations of a turbulent channel flow are conducted to show the existence of the optimal upwind scheme.

A POSTERIORI ERROR ESTIMATOR FOR HIERARCHICAL MODELS FOR ELASTIC BODIES WITH THIN DOMAIN

  • Cho, Jin-Rae;J. Tinsley Oden
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.3 no.1
    • /
    • pp.16-33
    • /
    • 2002
  • A concept of hierarchical modeling, the newest modeling technology. has been introduced early In 1990. This nu technology has a goat potential to advance the capabilities of current computational mechanics. A first step to Implement this concept is to construct hierarchical models, a family of mathematical models which are sequentially connected by a key parameter of the problem under consideration and have different levels in modeling accuracy, and to investigate characteristics In their numerical simulation aspects. Among representative model problems to explore this concept are elastic structures such as beam-, arch-. plate- and shell-like structures because the mechanical behavior through the thickness can be approximated with sequential accuracy by varying the order of thickness polynomials in the displacement or stress fields. But, in the numerical analysis of hierarchical models, two kinds of errors prevail: the modeling error and the numerical approximation errors. To ensure numerical simulation quality, an accurate estimation of these two errors Is definitely essential. Here, a local a posteriori error estimator for elastic structures with thin domain such as plate- and shell-like structures Is derived using element residuals and flux balancing technique. This method guarantees upper bounds for the global error, and also provides accurate local error Indicators for two types of errors, in the energy norm. Comparing to the classical error estimators using flux averaging technique, this shows considerably reliable and accurate effectivity indices. To illustrate the theoretical results and to verify the validity of the proposed error estimator, representative numerical examples are provided.

  • PDF

ON EXACT CONVERGENCE RATE OF STRONG NUMERICAL SCHEMES FOR STOCHASTIC DIFFERENTIAL EQUATIONS

  • Nam, Dou-Gu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.1
    • /
    • pp.125-130
    • /
    • 2007
  • We propose a simple and intuitive method to derive the exact convergence rate of global $L_{2}-norm$ error for strong numerical approximation of stochastic differential equations the result of which has been reported by Hofmann and $M{\"u}ller-Gronbach\;(2004)$. We conclude that any strong numerical scheme of order ${\gamma}\;>\;1/2$ has the same optimal convergence rate for this error. The method clearly reveals the structure of global $L_{2}-norm$ error and is similarly applicable for evaluating the convergence rate of global uniform approximations.

AN ERROR OF SIMPONS'S QUADRATURE IN THE AVERAGE CASE SETTING

  • Park, Sung-Hee;Hong, Bum-Il
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.235-247
    • /
    • 1996
  • Many numerical computations in science and engineering can only be solved approximately since the available infomation is partial. For instance, for problems defined ona space of functions, information about f is typically provided by few function values, $N(f) = [f(x_1), f(x_2), \ldots, f(x_n)]$. Knwing N(f), the solution is approximated by a numerical method. The error between the true and the approximate solutions can be reduced by acquiring more information. However, this increases the cost. Hence there is a trade-off between the error and the cost.

  • PDF

ERROR INEQUALITIES FOR AN OPTIMAL QUADRATURE FORMULA

  • Ujevic, Nenad
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.65-79
    • /
    • 2007
  • An optimal 3-point quadrature formula of closed type is derived. It is shown that the optimal quadrature formula has a better error bound than the well-known Simpson's rule. A corrected formula is also considered. Various error inequalities for these formulas are established. Applications in numerical integration are given.

On the use of spectral algorithms for the prediction of short-lived volatile fission product release: Methodology for bounding numerical error

  • Zullo, G.;Pizzocri, D.;Luzzi, L.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1195-1205
    • /
    • 2022
  • Recent developments on spectral diffusion algorithms, i.e., algorithms which exploit the projection of the solution on the eigenfunctions of the Laplacian operator, demonstrated their effective applicability in fast transient conditions. Nevertheless, the numerical error introduced by these algorithms, together with the uncertainties associated with model parameters, may impact the reliability of the predictions on short-lived volatile fission product release from nuclear fuel. In this work, we provide an upper bound on the numerical error introduced by the presented spectral diffusion algorithm, in both constant and time-varying conditions, depending on the number of modes and on the time discretization. The definition of this upper bound allows introducing a methodology to a priori bound the numerical error on short-lived volatile fission product retention.

Numerical algorithm with the concept of defect correction for incompressible fluid flow analysis (오차수정법을 도입한 비압축성 유체유동 해석을 위한 수치적 방법)

  • Gwon, O-Bung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.3
    • /
    • pp.341-349
    • /
    • 1997
  • The characteristics of defect correction method are discussed in a sample heat conduction problem showing the numerical solution of the error correction equation can predict the error of the numerical solution of the original governing equation. A way of using defect correction method combined with the existing algorithm for the incompressible fluid flow, is proposed and subsequently tested for the driven square cavity problem. The error correction equations for the continuity equation and the momentum equations are considered to estimate the errors of the numerical solutions of the original governing equations. With this new approach, better velocity and pressure fields can be obtained by correcting the original numerical solutions using the estimated errors. These calculated errors also can be used to estimate the orders of magnitude of the errors of the original numerical solutions.

Error Analysis of Muskingum-Cunge Flood Routing Method (Muskingum-Cunge 홍수추적 방법의 오차해석)

  • Kim, Dae-Geun;Seo, Il-Won
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.5
    • /
    • pp.751-760
    • /
    • 2003
  • Error analysis of finite difference equation on the Muskingum-Cunge flood routing method with free time and space weighting factor was carried out. The error analysis shows that the numerical solution of the Muskingum-Cunge method becomes diverged with time when the sum of time weighting factor and space weighting factor is greater than 1.0. Numerical diffusion increases when the sum of time weighting factor and space weighting factor decreases. Numerical diffusion and numerical oscillation increase when the grid resolution is coarse. Numerical experiments and field applications show that the Muskingum-Cunge method with free space weighting factor is more effective for simulating the flood routing with great peak diminution than conventional Muskingum-Cunge method with fixed space weighting factor, 0.5.