Browse > Article
http://dx.doi.org/10.3795/KSME-B.2003.27.7.995

On the Suitability of Centered and Upwind-Biased Compact Difference Schemes for Large Eddy Simulations (III) - Dynamic Error Analysis -  

Park, No-Ma (서울대학교 기계항공공학부)
Yoo, Jung-Yul (서울대학교 기계항공공학부)
Choi, Hae-Cheon (서울대학교 기계항공공학부)
Publication Information
Transactions of the Korean Society of Mechanical Engineers B / v.27, no.7, 2003 , pp. 995-1006 More about this Journal
Abstract
The suitability of high-order accurate, centered and upwind-biased compact difference schemes for large eddy simulation is evaluated by a dynamic analysis. Large eddy simulation of isotropic turbulence is performed with various dissipative and non-dissipative schemes to investigate the effect of numerical dissipation on the resolved solutions. It is shown by the present dynamic analysis that upwind schemes reduce the aliasing error and increase the finite differencing error. The existence of optimal upwind scheme that minimizes total numerical error is verified. It is also shown that the finite differencing error from numerical dissipation is the leading source of numerical errors by upwind schemes. Simulations of a turbulent channel flow are conducted to show the existence of the optimal upwind scheme.
Keywords
Compact Difference Scheme; Large Eddy Simulation; Finite Differencing Error; Aliasing Error;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Zang, T. A., 1991, 'On the Rotation and Skew-Symmetric Forms for Incompressible Flow Simulations,' Appl. Numer. Math., Vol. 7, pp. 27-40   DOI   ScienceOn
2 Wei, T. and Willmarth, W. W., 1989, 'Reynolds-Number Effects on the Structure of a Turbulent Channel Flow,' J. Fluid Mech., Vol. 204, pp. 57-95   DOI   ScienceOn
3 van Leer, B., 1982, 'Flux-Vector Splitting for the Euler Equations,' Lecture Notes in Physics, Vol. 170(Springer-Verlag, New York/Berlin), p. 507-512   DOI
4 Liu, M. S. and Steffen, Jr., C. J., 1993, 'A New Flux Splitting Scheme,' J. Comput. Phys., Vol. 107, pp 23-39   DOI   ScienceOn
5 Garnier, E., Mossi, M., Sagaut, P., Comte, P. and Deville, M., 1999, 'On the Use of Shock-Capturing Schemes for Large-Eddy Simulation,' J. Comput. Phys., Vol. 153, pp. 273-311   DOI   ScienceOn
6 Meinke, M., Schroder, W., Krause, E. and Rister, Th., 2002, 'A Comparison of Second- and Sixth-order Methods for Large-Eddy Simulations,' Computers & Fluids, Vol. 31, pp. 695-718   DOI   ScienceOn
7 Mossi, M. and Sagaut, P., 2003, 'Numerical Investigation of Fully Developed Channel Flow Using Shock-Capturing Schemes,' Computers & Fluids, Vol. 32, pp. 249-274   DOI   ScienceOn
8 Jeong, J. and Hussain, F., 1995, 'On the Identification of a Vortex,' J. Fluid Mech., Vol. 285, pp 69-94   DOI   ScienceOn
9 Fedioun, I., Lardjane, N. and Gokalp, I., 2001, 'Revisiting Numerical Errors in Direct and Large Eddy Simulations of Turbulence: Physical and Spectral Space Analysis,' J. Comput. Phys., Vol. 174, pp.816-851   DOI   ScienceOn
10 Ghosal, S., 1996, 'An Analysis of Numerical Errors in Large-Eddy Simulations of Turbulence,' J. Comput. Phys., Vol. 125, pp. 187-206   DOI   ScienceOn
11 Park, N., Yoo, J. Y. and Choi, H., 2003, 'On the Suitability of Centered and Upwind-biased Compact Different Schemes for Large Eddy Simulation: Part 1-Numerical Test,' Trans. Of the KSME B, Vol. 27, No. 7, pp. 973-983   과학기술학회마을   DOI
12 Zhong, X., 1998, 'High-Order Finite-Difference Schemes for Numerical Simulation of Hypersonic Boundary-Layer Transition,' J. Comput. Phys., Vol. 144, pp. 662-709   DOI   ScienceOn
13 Harten, A., Engquist, B., Osher, S. and Chakravarthy, S., 1987, 'Uniformly High Order Accurate Essentially Non-Oscillatory Schemes III,' J. Comput. Phys., Vol. 71, pp. 231-303   DOI   ScienceOn
14 Liu, X. D., Osher, S. and Chan, T., 1994, 'Weighted Essentially Non-Oscillatory Schemes,' J. Comput. Phys., Vol. 115, pp. 200-212   DOI   ScienceOn
15 Jiang, G. S. and Shu, C. W., 1996, 'Efficient Implementation of Weighted ENO Schemes,' J. Comput. Phys., Vol. 126, pp. 202-228   DOI   ScienceOn
16 Park, N., Yoo, J. Y. and Choi, H., 2003, 'On the Suitability of Centered and Upwind-biased Compact Different Schemes for Large Eddy Simulation: Part II- Static Error Analysis,' Trans. Of the KSME B, Vol. 27, No. 7, pp. 984-994   과학기술학회마을   DOI
17 Lele, S. K., 1992, 'Compact Finite-Difference Schemes with Spectral-Like Resolution,' J. Comput. Phys., Vol. 103, pp. 16-42   DOI   ScienceOn
18 Comte-Bellot, G. and Corrsin, S., 1971, 'Simple Eulerian Time Correlation of Full- and Narrow-Band Velocity Signals in Grid-Generated, 'Isotropic' Turbulence,' J. Fluid Mech., Vol. 48, pp. 273-337   DOI
19 Anderson, W., Thomas, J. and Van Leer, B., 1986, 'Comparison of Finite Volume Flux Vector Splitting for the Euler Equations,' AIAA Journal, Vol. 24, pp. 1453-1460   DOI   ScienceOn
20 Metais, O. and Lesieur, M., 1992, 'Spectral Large-Eddy Simulation of Isotropic and Stably Stratified Tubulence,' J. Fluid Mech., Vol. 239, pp. 157-194   DOI
21 Germano, M., Piomelli, U., Moin, P. and Cabot, W., 1991, 'A Dynamic Subgrid-Scale Eddy Viscosity Model,' Phys. Fluids A, Vol. 3, pp. 1760-1765   DOI
22 Tolstykh, A. I. and Lipavskii, M. V., 1998, 'On Performance of Methods with Third- and Fifth-Order Compact Upwind Differencing,' J. Comput. Phys., Vol. 140, pp. 205-232   DOI   ScienceOn
23 Blaisdell, G. A., Spyropoulus, E. T. and Qin, J. H., 1996, 'The Effect of the Formulation of Nonlinear Terms on Aliasing Errors in Spectral Methods,' Appl. Numer. Math., Vol. 21, pp. 207-219   DOI   ScienceOn
24 Steger, J. L. and Warming, R. F., 'Flux Vector Splitting of the Inviscid Gas Dynamics Equations with Applications to Finite Difference Methods,' J. Comput. Phys., Vol. 40, pp. 263-293   DOI   ScienceOn
25 Kravchenko, G. and Moin, P., 1997, 'On the Effect of Numerical Errors in Large-Eddy Simulations of Turbulent Flows,' J. Comput. Phys., Vol. 131, pp. 310-322   DOI   ScienceOn
26 Carati, D., Jansen, K. and Lund, T., 'A Family of Dynamic Models for Large-Eddy Simulation,' Annual Research Briefs, Center for Turbulence Research
27 Roe, P. L., 1981, 'Approximate Riemann Solvers, Parameter Vectors and Difference Schemes,' J. Comput. Phys., Vol. 43, pp. 357-372   DOI   ScienceOn