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AN ERROR OF SIMPSON’S QUADRATURE
IN THE AVERAGE CASE SETTING

SuxGg HEE CHor AND Buwm 1L Hona

1. Introduction

Many numerical computations in science and engineering can only
be solved approximately since the available information is partial. For
wstance, for problems defined on a space of functions, information
about f is typically provided by few function values, N(f) = [f(z1),
flza), ..., f(zn)]. Knowing N(f), the solution is approximated by a
numerical method. The error between the true and the approximate
solutions can be reduced by acquiring more information. However, this
increases the cost. Hence there is a trade-off between the error and the
cost.

The error between the true solution and the approximation depends
on a problem setting. The worst case setting is the most commonly
studied setting. In this setting, the error of a numerical scheme is
defined by its worst performance with respect to the given class of
functions. Many results are known in this setting; see [4] and [7] for
hundreds of references. In this paper, we concentrate on another set-
ting, the average case setting. In this setting, we assume that the class
F of input functions is equipped with a probability measure. Then
the average case error of an algorithm is defined by its expectation,
rather than by its worst case performance. The average case analysis
is important and significant number of results have already been ob-
tained (see, e.g., [7] and the references cited therein). There are some
justifications of the importance of the average case approach:

(1} Mathematical interests: Even if a specific numerical scheme
has small worst case error, its average case error provides ad-
ditional information on the properties of that algorithm. In
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particular, for the Simpson’s quadrature we show that the av-
erage case error is proportional to n~™ ™47} if the input
function f is r times continuously differentiable. This means
that for » > 4 the worst case and average case behaviors of
the quadrature are similar. However, for » < 3, the average
case error is roughly n times smaller than the worst case error.
Specifically, for r = 0, the average case error is ©(1/n),' while
the problem is unsolvable in the worst case setting.

(2) Reduction of complexity: For a nuraber of classes F' of
functions, some problems are unsolvable i1 the worst case set-
ting. For instance, this holds for the integration problem with
the class F = {f € C[0,1] | f is bounded by 1}. That is. no
numerical scheme that uses a finite number of function values
can approximate the integral I{f) = fu (z)dx of f with the
worst case error less than 1. However, in wh(‘ average case set-
ting, this problem is solvable. Hence we have the reduction of
complexity in the average case setting.

It is well known that the average case setting requires the space of
functions to be equipped with a probability measure. In this paper,
we choose a probability measure p, which is a variant of an r-fold
Wiener measure w,. The reason for choosing the Wiener measure is
that it is one of the most commonly assumed probability measures on
function spaces. The probability measure w, is 1 Gaussian measure
with zero mean and correlation function given by M, (f(x) fly)) =

Jp £ Jwdf) = j(l (il (U—-——idt where (z — t)4 = max{0, (z

]
—t) } Equlvalently, f dlstrlbruted according to w, can be viewed as a
Gaussian stochastic process with zero mean and autocorrelation given
above. However, since w, is concentrated on func:ions with boundary
conditions f(0) = f(0) = --- = f"(0) = 0, w2 choose to study a
slightly modified measure p, that preserves basic properties of w,, yet
does not require any boundary conditions. More precisely, we assume

!The ©-notation is used for asymptotic equalities. That is, f(n) = O(g(n))
means that there are positive constants ¢; and ¢y such that :1g(n) < f(n) < cag(n),
¥n. Later on, we will use O and Q-notations for asympiotic inequalities. More
precisely, f(n) = O(g(n)) means that f(n) < cag(n), ¥a,; and f(n) = Q(g(n))
means that g(n) = O(f(n)) (i.e, f(n) > c1g(n), ¥n). 'The o-notation, f(n)} =
o(g{n)), is used to denote the fact that iim, f(n)/g(n) = (.
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that a function f, as a stochastic process, is given by

flz) = Ale)+ foll-z), «€0.1],

where f1 and f; are independent and distributed according to w,. Then
the corresponding probability measure y, is a zero mean Gaussian with
the correlation function given by

1 T T r r
M. (S fu) = [ oty U8+ 0ot vy g,

rl 7!

We study the problem of approximating an integral I( f) = fol flz)dz
for f € F' = C7[0, 1], assuming that the class of integrands is equipped
with the probability measure y,. In particular, we study Simpson’s
quadrature which is one special case of Newton-Cotes quadratures. The
error of Simpson’s quadrature is minimal (modulo a multiplicative con-
stant) when the equally spaced sample points are used in both the
worst case and average case settings.

The behavior of Simpson’s quadrature is well understood in the worst
case setting. Recall that when ||f!™)||, is by one, then the worst case
error of Simpson’s quadrature is minimized (modulo a multiplicative
constant) when n equally spaced points are used and this error is pro-
portional to n~™™{*7}  Since the worst case error of any numerical
scheme that uses n function values is proportional to n™" (see [1]),
Simpson’s quadrature is almost optimal if and only if r < 4.

In the average case setting, we assume that the space F is endowed
with a probability measure u, which is a variant of r-fold Wiener mea-
sure. We show that the average error of Simpson's quadrature is min-
imized (modulo a multiplicative constant) when equally spaced points
are used. For n such points, the average case error is proportional to
—min{4,r+1}  Gince the average case error of any numerical scheme
that uses n function values is at least proportional to n~(""1) (see [5]),
the Simpson’s quadrature with equally spaced points is almost optimal
in the average case setting if and only if r < 3.

n
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2. Basic Definitions

In the integrdtion problem, we compute an approximation to the in-
tegral I( f jo r)dr. where I : F — R, with f £ F = C7[0.1]. This
approxlmdtlon to I (f) is computed based on n function values. That
is. the available information N(f) about the intcgrand f is given by
N(f)y = [flzy), f(xa)e... . flxa), x: € 0,1]. Tke number n of func-
tion values is called the cardinality of N, and is denoted by card(N).
Formally, the points r; could be chosen @ prior:, cr z; could be chosen
adaptively based on observed values f(z),..., f(z;-1). In the for-
mer case. N is said to be nonadaptive, and in the latter case, N is
said to be adaptive. Since adapt:on does not help (see [9]). without
loss of generality, we restrict our attention to nonadaptive informa-
tion only. Given y = [y1,... ,yna] = N(f), the approximation to I(f)
is provided by ¢(y) = &(N(f)i. where ¢ : R" — R, called an al-
gorithm, is an arbitrary mapping (for more discnssion on algorithms
and information, see [7]). Numerical quddr'ltur(b ply) = So0 aif(xi)
with appropriately chosen weights a, € R are sp((_,lfl( examples of al-
gorithms. They include composite Newton-Cotes quadratures and, in
particular, the composite Simpsor.’s quadrature. Since we analyze the
Simpson’s quadrature, we now recall the definiticn and basic proper-
ties of Simpson's quadrature, see also e.g., [2]. In composite Simp-
son’s quadreture, we have n = ?k + 1 with z; = 0, z,, = 1, and
Ty — Loi—1 = Toip1 — L25 = hy, = 1,2,... k. On each subinterval
(T2i—1, Tyita ], the integral L(f) = f;}jl‘ flx)dr is approximated by

h;
Sif) = —{f Toi-1)+ 4f(@2:) + flraigr)}-

Then, I(f) is approximated by I(f) = Zf:lj‘i(f) ~ S(N(f)) =
SE L Sif)

The bchavi()r of Sitnpson’s quadrature is well understood in the worst
case setting. Recall that for Fy = {f € F | ||l < 1}, the worst
case error of an algorithm ¢ that uses N is defined by ¢*°™* (9. N) =
sup re gy, ()= @ N(f))|. For given n, the worst cese error of Simpson’s
quadrature is nnmmwed (modulo a multlphcatW( constant) when the
points x; are equally spaced, i.e.. N*(f) = [flzy).... . flen)], v, = (1~
1)2h, h=1/2(n—-1),and e*"*( 5, N*) = O (n ™47} Since due
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to [1], inf{e*°"*"(¢, N') | for all (¢, N) with card(N) =n} = O (n=7),
Simpson’s quadrature is almost optimal in the worst case settlng when
r <4.

In the average case setting, we assume that the space F' = C7[0,1] is
equipped with a probability measure p, which is « variant of the r-fold
Wiener measure. In order to define it, we first recall basic properties
of the classical r-fold Wiener measure w,, see [3], [6] and [8]. It is a
Gaussian measure with zero mean and correlation function given by

Yo =87 (y =)
e B e

More precisely, we assume that a function f. as a stochastic process,
is given by f(z) = fi(x)+ f2(1 —z), where f; and f; are indepen-
dent and distributed according to w,. Equivalently, this leads to the
probability measure u, defined on o-field of the space C7[0,1] that is
zero mean Gaussian with the correlation function given by

* dt

— )y =) 4+ (1= 1) (1~
M, (f( / kSt R (r! T!I Ay -t
(¢ = O ly — ) + (= 2) (t = y)"

r!r!

dt.

Ji
o\.

The average error of an algorithm ¢ that uses .V is defined by

(6. Nipr) = (M, ([I(f) = o(N(£))2))""?

1/2
= ([ - ovinPenan )

It is known, see [5], that for the r-fold Wiener measure w,, the average
error of any algorithm that uses information of cardinality n is bounded
from below by

(o Niw,) = Q( ’“+”), Y. YN, card(N) = n

Furthermore, this bound is sharp. Indeed it is attained (modulo a mul-
tiplicative constant) by information: N*( f) consisting of function values
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at equally spaced points and the algorithm ¢*(N*(f)) that equals the
integral of a natural spline of degree 2r+1 which interpolates f at those
equally spaced points and satisfies the same boundary conditions as f
does. Similar result holds true for the measure .,

3. Average Case Error of Simpson’s Quadrature

Recall that the space F' = C7[0, 1] is equipped with the probability
measure 4, defined in chapter 2. The error I( f)—S{N(f)) of Simpson’s
quadrature equals

k

I(f)— S(N(f )_ZZ,, where Z; = Z,(f) == L(f) — Si(f).

i=1

Since f is a zero-mean Gaussian process, Z;’s are zero-mean Gaussian
random variables with covariances given in the following lemma.

LEMMA 3.1. For: <j,

61']‘ *Cype h?r+3, 1f7‘ S 3,
M#r (ZIZJ) = 515 -

Cijr‘h,'h'ja 1f7‘24,
where 6;; is the Kronecker delta. For r < 3, the constant ¢, is indepen-
dent ofh s and equals respectivelv: ¢y = %, c) = -1—25, = ﬁ, and
c3 = 4536 Forr =4, c;iy = ——,(1 - ;ggh ) and cm - 90 (i) +1—
T25+1 + hi + hj). Forr > 5, ¢ = cijr(hi, hj) is bounded from below
by

§ (251 — z2i_1)? T;,r_l? Pt (22541 — 22i41)P(1 — 22541)
a
' pl(r—4-p)(2r~7-p)

2r—7—p

p=0

+as [h-r_a(xzj_l —zgi41) T hr—.s(iﬁj-l —x9i41) ¢

-3 - —3 -
>ar[zy 0 (2gj 1 —ai_) T 4+ xy f’lr; 4] + AT (&1 — 2aigr) T
+ (1 - 2g541) 3 (@2j41 — 22i41)""* + (1 —zi41) 31— zgiq)"

+ h; 3(1‘2]'—1 — Z3i41)" 7Y
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and from above by

—4 2rT— —7 -
= (@241 = 22i00)P 2510 TP 4 (22501 — @2 1)P (1 — 3gy_q)27= 7P
5> ;

= pl{ir—4-p)l{(2r-7-p)

-3 - - —
+  agh T (241 — 22 1) T+ hT 3@aj41 — 22i-1)"Y)

-3 _r—4 -3 _
Sa;[zgi+lz;_1’+l + AT (@ - zaig) !
+ M=z 1) (1 —zg,)" % + h;_3($2j+] —z2,-1)" 7Y,

— 1 o 2(r42)+(r—4)27 _ .
where a; = m, ag = I(T(r—-—ti)(—’(r_%—)T)' a, = Imnn {az, (—r'_-jg),zg,.:y} )

and a) = max {ag, F‘%-)_'} .
Proof. Let Ziy = Z;(f1) and Z,2 = Zi(f2). Then Zi(f)y=Zia+ Za,

and due to the independence of f; and f,, we have M, (Z,Z;) =
Mo (ZinZj1)+ M, (Z2Z}3). Fori < 3,

Mo, (Z:1Z;1)

1 Taig1 (g — )7 T25 41 - 97
I/ / ( )+ dr — A;(t) / ’ L)+ dy—AJ’l(lf) dt
0 T r! Jegi_4 r!

2¢i—1
1
:/ Lia(t) - Ljy (1) dt,
0
where L;; is the first term and Ljy 1s the second term in the above
integral, and A,;(¢) = S; ((;rt,)-*-> Since L;;(t) = 0 when t € [z2,41, 1],
we have

T2i41
Mo (ZinZjn) = / Lia(t)- Lj(t)dt.
0
Similarly,
‘er(Zizsz)
1 Toy i — r Teipr (1 — r
L [ ]

T2i—1

1
=/ Lis(t) - Lys(t) dt,

2j -1

where Ly is the first term and Lj; is the second term in the above

r

integral, and A;2(t) = S; ((—t%—)—t) Therefore, we have

1

L2441
.«Mur (Z,ZJ) = / L,‘l(t) . Lj](t) dt +/ L,‘g(t) . L]‘Q(t)dt.
0 z

251
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Consider first » < 3. Since Simpson’s quadrature is exact for poly-
nomials of degree < 3, L;;(t) = 0 for ¢ < z,4; and L;y(t) = 0 for
t > a9y Thus, M, (Z;Z;) =0, and hence, Z; and Zj are indepen-
dent when ¢ < j. For i = j,

2
) Ti41 L2i4t (o )7 AT
A’-{w (Zzl) == / [/ L )+ dT - Si <( )'t>} df
’ l L2201 T2i—1 ‘T'! 7'!

2r+3
. .

=cnh

where

i 1 r
. Z—u
Cr1 = '2“_”/ [/ -——-( ' St dz
0 0 r.
)

1 {(0— u)l ] 4(% —u)l . (I—u)y H du.

r! r! rl

6

the last equality due to a simple change of variables z = (a—19,.1)/2h,
and u = (t — x9,-1)/2h;. Similarly. M, (Z3) = crghfr“. where

1 1 r
oy u—z)
(‘,772 e 227+3 / [/ (—-—-——-—-—i ]?
r!
S0 i}

1 {(uAO); . du— 1)1 (}5—1);}

7! r! r!

2
4

du.

6
Note that ¢, = ¢,y + ¢,2. Since the specific values of ¢, can easily be
obtained, we omit this part. This completes the proof for r < 3.
Next consider 7 > 4. Divide the integral in M., (Z;1Z;,) into two
parts, 1.e.,

Mo (ZnZjy)

:/ La(t) L, (t)dt
J0

T2i-1 12«‘+1'
= / -+/ )Ln(f)-Ln(f)dt-
0 V241

Then, for t € [0, x2,1].

Toi 4 h5h5 Tyi-1 (\f —f)'_4 (T] . t)rwi
Li(t)-Li(t)dt = =L ! d dt
/0 1) Lindf)e 002 /0 (r—4! (r-4)

) 518
= A hRS.
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where {; € (22;-1,%2:41) and 7, € (z25-1,72541). A;jr is bounded
from below by a;g(x2;_1), where ay = 1/(90%(r -- 4)!) and

—4 \p r—7—
R S N T L P 1
g(t) = —.
o p! (r—4—-p)!2r -7-—p
Since g(0) =0
T2i—-1
9(x2i-1) = /
0
:/12'_ tr-—4 (:vzg—l—xzi—l)“ tr4-r 'dz‘
- 0 p! (r—4—p)!
_ T2i— ltr 4 J.Q]_] T l+t)7~4 g
(r —4)!

_ Fai-l prt (2gj—1 — ayimy + 1)1 4t
(r--4) '

where z = z5,_1/2. Then,

g(zai_1)
- . - R _ . r—4
z/zt’—“(”"‘l”“"—”r L+ / TR G TS el T8 e ) MM
0 (r—4)! 2 {r—4)!
r—3 7
_2T 7 (mgy 1 — @) R I T (2251 — i1 +2)777
r—3 (r —4)! (r—'!)'
z7 3 (IE‘L-— - Z)-llg 1
> Toi 1 — Toi_1)7 % 274 j=
'(r—3)!( 2; -1 2i—1) + —(r~3)'
r—3 r—3
Toi_1 4 Toy_1 4

(1?2]'—1 - IZi—»l)r

>zl P 11 T, .
S —3)l2r-3 (r —3)lar—3 2 -1

Thus.
ai -3 —4
Air 2 m_—gf;i_l(m]’—l —ry)
a; r—3 _r—4
+ (T‘—3)‘2' Toi_ 1‘E2]-]
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A;jr is also bounded from above by

r—4—p
x, r— z
Aii, < Bt ) o Taip
ir S r— 4)' (22541 — T2i41) (2r —7—p)
a -3
< (_7"——_3)'_%1“ 2]+1
For t € [z3;_1,%2i+1], we have

Toiq h? Tig1 (nt _ t)r—4

Li(t) - Ly(t)dt = — 2 Li(t) —————dt
/;%_1 ll( ) b ]1( ) 90 ‘/;2‘-_1 l]( ) (7'—4:)'

+215
The bounds on B, can also be computed as

ag(z2i—1 — T2i41)" ! < Bijr < ag(@gj4r - T2im1)

2(r+2)+(r—4)2”

135(r—4) {7 F2)! * Similarly,

where a; =

1
M, (Z3Z2) = / Lip(t)- Ljs(t)dt

T2j 41 1
_ / +/ Lis(t) - La() dt,
251 L2541
with

1 hShS 1 (6 . t)r—4 (nt _ t)r—4
2(t) - Lig(t)dt = =2 / ! dt
L2i+1 L 2( ) L]2( ) 902 Jogy s (T‘ _ 4)| (7‘ . 4)|

515
= AL, - RShS,

iyr

and

T2j41 ’ RS [T+t (& — gir—4
()L = ‘. Lao(t)dt
/ Lalt) Lu(de = —ge [ Bt 100

= B!, h.h’.+2
177 )

137
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where £ € (z2i-1,T2i41), 7t € { (Zoj—1,Z25+41), Ai]r and B:JT are in-
dependent of #; and h;. Note that a, = min{ay,a;/((r — 3)127~ H1,
a,. = max{as,a;/(r — 3)} Aijr, Bijr, Ajj,, and Bl , which, after
some straightforward calculation, provides the bounds on cijr. This

completes the proof. ]

In the next theorem that is the main theorem of this paper, we show
that the Simpson’s quadrature with equally spaced points is optimal in
the average case setting when r < 3.

THEOREM 3.1. For any information N,, of cardinality n,
™IS, Npin,) = 0 (n—min{r+l,4}) .
For the information N} that uses n equally spaced points,
avy(s N *vﬂr) = @ (n——min{r+],4}) .

Thus, the error of Simpson’s quadrature is minimal (modulo a multi-
plicative constant) when equally spaced points are used. Furthermore,
for r < 3, Simpson’s quadrature at equally spaced points is almost op-
timal among all algorithms that use n functions values at arbitrary
points.

Proof. Assume r < 3. Since Z;’s are independent,

e®9(S, Np: pir)? Z M, (Z%) = ¢, Zh””

with ¢, given in Lemma 3.1. To minimize the above expression, we
need to solve

5 k
—E h?r+3 =0, for y=1,2,... ,k,
Oh; pa
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subject to Zf:] hi =1/2. Then, since hy = 5 — el

“s1=1

k—1 : k—1 2r-+3
-6% Z RITHS 4 (% - Z h,-)
j . ,

1=1

) kel 2r42
. 2r-+42 : ‘
=(2r +3)*? — (2 +3) (5—25,>

=0, fory=1,... k= 1.

Thus, we have

SV

k—1
hj = - Zhl = hgforj=1,... k-1
=1

Hence, thr+3 i1s minimized when all 2,’s are equal. Let A = h; for
all 7. Then, we have

1}

€IS, Ny piy)?

k
0y s
t=1
k
e, Z h2r+3
1=1

— ﬁh2r—+—‘2
2

= "I9S, NS

N/

This completes the case of r < 3.
Consider r > 4. Then, according to Lemma 3.1. we have

2
eal’g(S’ J\Tn;,ur)z = A{Hr (Z Zl>

= 3N M (22 = 33 ey ki
i i



Since ¢;;r > a, (4

An error of Simpson’s quadrature in the average case setting 247

2r—7 . N .
) if 29,09 > —31— or ry;41 < 2. we have

\

e IS, Npipi,)? > ar(é)2r—7( Yo > R+ DI H

w23 120 T2 41<5 <0

= Q(n8).

Finally, for equally spaced points, ¢*9(§, Nripr)? <al ¥y, Zj R =

O(h®). This completes the proof. [ |
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