
East Asian Math J. 19 (2003), No. 1, pp. 17—26

ERROR ANALYSIS USING
COMPUTER ALGEBRA SYSTEM

Keehong Song

Abstract This paper demonstrates the CAS technique of
analyzing the nature and the structure of the numerical error
for education and research purposes This also illustrates the
CAS approach m experimenting with the numeiical operations
in an arbitrary computer number system and also m doing error
analysis m a visual manner

1. Introduction

This paper starts with analyzing some of the classical examples
of numerical errors from a CAS's perspective, in which the comput­
ers intrinsic imperfection displays itself in an intuitively appealing
fashion Then as the main part of the paper, it discusses the various
techniques for investigating the nature of numerical errors, which are
feasible only with CAS, This paper shows the ways of constructing
a model computer number system for investigating the fundamen­
tals of computer e호ror. This construction of the toy computer gives
a perspective into the concrete methodology on how to experiment
with the computer erro호, In doing so, CAS's symbolic manipulation
and visualization makes it possible to perform algebraic operations
in an arbitrary number system In this paper, we use Mathematzca as

Received March 6, 2003 Revised May 2, 2003.
2000 Mathematics Subject Classification* 65G99
Key words and phrases, numerical error, Mathematica, computer number,

machine epsilon, machine number

18 K. SONG

the choice for CAS for its symbolic, pattern-matching, and graphical
programming language features ([이).

2・ Case Studies of Error-prone Circumstances

Case 1: If 0.1 is subtracted from 1 ten times consecutively, will the
outcome be zero? If 0.1 is subtracted from 1 until we are supposed
to get zero as the outcome, then we will get 1.38778 x 10一姬 instead
of ze호o, which should be surprising for the unt호ained. In order to re­
produce this odd phenomenon, we can perform a set of Mathematica
functions given below.

NestList [# - 0.1 &, 1, 11]

NestWh고丄eList [# ~ 0.1 &, 1, Positive[#] &]
Similarly, although a simple explanation for this anomaly can be

given, a few lines of Mathematica debugging codes should reveal
much of the problem therein.

x = SetPrecis고on [.4, 16] ; i=l;

While [Print [SetPrecision [x, 16]] || (x'= 0.0 && i < 4),
x= x -.1; i++]

0.4000000000000000
0.3000000000000000
0.2000000000000000
0.1000000000000000
2.775557561562891 x 10~17

Case 2 ([1]): If the order of addition of real numbers is rearranged,
then will the result be the same? In order to answer this question,
consider two vectors, a and 0〉expressed in the Mathematica syntax
below.

Of = { 2.718281828, -3.141492654, 1.414213562,

ERROR ANALYSIS USING COMPUTER ALGEBRA SYSTEM 19

0.5772156649, 0.3010299957);
月={ 1486.2497, 878366.9879, -22.37492, 4774714.647,

0.000185049 };
Then the dot product of the vectors yields the result in the next

line.
(4040.05, -2.75938 x 106, -31,6429,2.75604 x 106,0.0000557053}.
Now the anomaly is going to be visible as the order of addition

changes from left to right and then right to left.
SetPrec고Sion [Fold [Plus, 0, prod] , 16]
SetPrecision [Fold [로lus, 0, Reverse[prod]], 16]
Now the importance of sorting operation as an error-reducing

measure can be demonstrated as we perform the following Mathe-
matica functions and then compare the results.

SetPrecision [Fold [Plus, 0, Sort[prod]], 16]
SetPrec고Sion [Fold [Plus, 0, Sort [prod, #1 > #2&]] , 16]

Case 3: Will the graphs of the following expression, x3 — 3x2 + 3x~
1 = — 3)x + 3) — 1, (g -1)3 look the same? Although the answer
would be positive when the plotting is done on a reasonably wide
interval, when the plot is drawn on a narrow range, the graphical
outcome of those equations becomes disturbingly different.

Plot [x3 - 3x2 + 3x -1? { x, 0.99998, 1.00002 }]
The fully expanded form shown above can be simplified somewhat

using Horner^ method ([1], [2]). Now we see that a small change in
the form makes a considerable difference m the graphical outcome.

<< Algebra JHornerJ
parenthesized = Horner [x3 - 3x2 + 3x -1]
Plot[parenthes코zed, (x, 0.99998, 1.00002 }]
The optimal error-reducing form would be the factorized one,

when possible, as demonstrated below in a visual manner.

20 K SONG

Plot[(x-1)3, (x, 0.99998, 1.00002), PlotRange T A고]』

Now a visual rationale for the difference in look is possible with
CAS. Let's take a peep inside the inner workings of the given com­
puter number system using CAS, which help determine the desirable
form in a visual and convincing manner.

<< NumericalMath,
MicroscopicError[x3 - 3x2 +3x -1, (x, 0.999}]

M고cro오copicError[x((x-3)x +3) -1, { x, .999}]

MicroscopicError[(x-3)3, { x, .999}]
Now to exaggerate the discrepancy even further, we do the similar

operation for the polynomial of higher degree.
f [x_] = Product[x-고 , {i, 0, 30}]
g[x_] 느 Expand [f [x]]
As expected, we get more dramatic difference in graphical display

for the algebraically identical polynomials.
p고cl 느 Plot [f [x] , (x, 10, 20}]

pic2 = Plot [g[x] , {x, 10, 20}, PlotPomts 一，3]

Case 4- Is it possible that the variance of a dataset with three
different data value be 0?

The variance of a dataset of different data is supposed to be
greater than zero. However, under certain circumstance, it is pos­
sible to get zero or below for the variance due to numerical er호ofs.
The ordinary definition of the variance usually takes two different
forms. Namely, they are

-£(切一饥2 =兌(£务2 一噸2), y
Z=1 2 = 고 2 — 1

However, as far as the numerical errors me concerned, the quality of
the two algebraically identical formulae for the variance of a dataset

ERROR ANALYSIS USING COMPUTER ALGEBRA SYSTEM 21

differs considerably. As shown in previous examples the former would
have the numerical advantage as it has fewer operations. Here the
difference between them can effectively demontrated using the CAS's
symbolic manipulation capability. To demonst호ate the difference of
the two formulae, lets assume we have a dataset of size three.

lz , 、
avg = -(a + b + c);

o
ai — a2 + &2 + c2 — 3avg2;
g = (a— avg)2 + (b— avg)2 + (c — avg)2;

However, these two algebraically identical expression yield dif-
ferent results numerically. To dramatize the discrepancy, we use a
simulated number system where the seven-digit precision operations
are forced.

SetArithmetic[7, MixedMode —> True]
We need to put the header 5 ComputerNumber5 to ensure that all

the subsequent numerical operations be done in the limited precision
as intended.

(a, b, c} = ComputerNumber /@(10000, 10005, 10010 }
Now we can easily check the anomaly in which the computed

value differs depending upon the form and, even worse, the variance
becomes zero

尸 + 员 + c2 _ (.으+£ +。)2
3

0
/ a + b + cx2 /, a + b + cx2 / a + b + c.2
(Q------- 3—) + 也------§—) +(c---------§——)

U 。 D

50 0000000000000000

Case 5 ([외): Can the following algebraically identical different
expressions -------5------r, take different value when evaluated at a1 +宀+ y
certain x?

22 K. SONG

The Mathematica function Hold is supposed to defer the execu­
tion of an expression until ReleaseHold is performed.

f[x]:=亠彳
丿L」 X+1

g[步」：=Hold
1+x

Now we can see that the later expression gives the tighter interval,
which implies the smaller error margin as demonstrated below.

/[Interval [(1,2)]]

Interval [{-,1}]
o

ReleaseHold [g(Interval [(1, 2}]
rrl 2“

Interval [{-,-)]
厶 o

3. Model Computer Number System and Machine Epsilon

In order to fully understand the basic nature of the numerical er-
ro호, we get to construct a toy computer, which would indicate the
inherent problems of the computer of any dimension. As a simple
model serving our purpose effectively, we will construct a toy com­
puter with the number system, ±(6162&3)2 x 2e, bz = {0,1}, —2 <
e < 1, and visualize the discrete structure in a linear representa­
tion. Once displayed, what is visually outstanding is going to be
the uneven distribution with a concentration in the middle of the
scale. Now Mathematzca^s symbolic capability plays a pivotal role in
constructing the model computer structure that we intended to vi­
sualize. The variable tfloatnunis, contains all the compute호 numbers
of the system the toy computer represents.

floatnums = Distribute[(
{” _亦,项”},

ERROR ANALYSIS USING COMPUTER ALGEBRA SYSTEM 23

ro,5,,,r),
{”2"

List, List, List, StringJoin[##]&]
Next we need to convert the information in a string form into the

numeric information.

Sort@ToExpression [floatnums]
Now the numeric data is prepared to be a primitive form so as to

be processed in the Mathematica graphics function.
pts = Point [(#, 0}]& /@ %;
marks = Join [Table [Textfz, (z, 0}, (0,1}], (/, —3,3}],

{ Tex티—.5, {-.5, 아, {0,1}], Text[.5, {.5,0}, (0,1}]}]；

toyComputer 느 Append[pts, marks] ;
Show [Graphics [toyComputer] , PlotRange —> (All, All },

AspectRatio —> 0.1, Prolog —> Po코ntSiNe[(h01][
We can make the several steps listed above into a single procedure.
d고sp丄ayOnTheLine [xvals」:= Module [{n — Lengthjxva•고s],

pts, marks, 고, floatScale}3
pts 드 Pomt[{#, 0}]& /@ xvals;
marks = {Text[xvals[[l]], {xvals[[l]], 0}, (0,1}],

T으xt[xva]_s [[-1]] , {xvalL으 f [一I]] , 0 }, {0, 1}] ,
Text[0,{0,0},(0 1}]}；
floatscale = Append[pts 3 marks];
Show[Graphics[floatScale], PlotRange T All,

AspectR효tj.o T 0.1, Prolog 一스 PointSizef-S/zz]]
]

The process explained so fa호 can further be simplified using the
standard Mathematica package. First, we need to force the future
computer arithmetic as 3-digit mantissa in a binary system for the
experimentation purposes.

SetArithmetic[3, 2]

24 K. SONG

Then we need to generate the positive and negative numbers in
the system and then sort them to display on a linear scale.

posNums — Tab고e[Normal[ComputerNumber |丄如

{j, -2, 1), {i5 4, 7)]
negNums = Tab고e [Normal [ComputerNumber [—1, i, j]],

{j, -2, 1}, (i, 4, 7}]
Flatten[Un고on[posNums, negNums]]
machine Nums = Sort [N [%]]
displayOnTheLine [machineNums]
Now the construction of the toy computer begs the discussion of

the machine epsilon, the unit measure of error. The machine ep­
silon, the distance from a machine number 1 to the next machine
number, which differs depending upon the given hardware and soft-
wa호e system. In general, the distance from a given floating number
to the next one is about R SMachineEpsilon, a system variable for
the machine epsilon in Mathematica, Although the machine epsilon
is a built-in variable in Mathematica^ it can be easily obtained for the
given computer system using a procedure similar to the one given
below.

MantissaExponent [$MachineEpsilon]
2・一实

g=l; ex = g = 흥;

厶

While [ex> 0,
g = 0.5 g；
ex = g 0.98 + 1;

ex = ex -1;
If [ex >0, eps 드 ex]];

eps
This routine leads to another useful routine that determines the

next number in a number system of a given computer system.
nextnum [x] : 드

ERROR ANALYSIS USING COMPUTER ALGEBRA SYSTEM 25

Module [(g= x}, ex = g = I；

While[ex >0, g 드 0・5g;
ex 프 g 0.98 + x; ex=ex-x;
If [ex >0, eps = ex]];
으 ps 1

Now we gene호ate the next number for a sequence from 1 to 100
and find an interesting pattern such that the distance to the next
number for the integer 2 and 3 is 2 $MachineEpsilon and for 4,5,6,7
is 4 SMachineEpsilon.

nextnum[n]Tab 고 e ---- -----------------, {n> 1, 100)
$MachmeEpsilon

The difference between two consecutive machine numbers is called
an ulp (unit in the last place, «.e., one digit in the least significant
place), which can be obtained using the next procedure.

uulp [x_]:=
Module [(t = Abs[N[x]] , u },
If [t < $MinMachineNumber,

$MachmeNumber,
u = N [2 Floor [Log [2, t $MachineEpsilon]
t=t - Release[t-u];

Lf [t 드 0, II t듀二 2u3 2u, u]
1

]；

The size of an ulp varies depending on where the given number
is located in the scale of machine numbers. For example, between
1 and 2 an ulp is equal to SMachineEpsilon and between 2 and 4 it
is equal to 2 SMachineEpsilon. Consequently, we can guess that the
distance between R and the next numbe호 to R is approximately R
SMachineEpsilon.

Table Ulp [n.(l + SMachineEpsilon)] r)
-------- ——— ------------------------- , j n. 1. 100 [

, $MachmeEpsilon .
This provides another algorithm that further simplifies the one

given above.

26 K. SONG

Table [Ulp[n + n $MachineEpsilon)J, { n, 1, 10)]
In order to find the unit for the machine number to the left of 1,

we can perform the next operation.
Ulp[l (1 -$MachmeEpsilon)]
Here is another example of the advantage of using CAS as the

analyzing and visualizing tool. It displays the error pattern and size
in the neighborhood of a certain number in the unit of ulp. The
advantage of this visual approach is clear as it can often replace the
computational one.

Microscope[Log[x], {x, 5, 5}]
MicroscopicError[Log[x], (x, 5, 10}]
Likewise, the virtue of the routine error-reducing technique shown

below can be ascertained with the visualization technique using CAS.
MachineError [+ 1 -1, x T 0.0000니

x2
MachineError f 厂 ”，一.-----,x T 0 . 000011

Now we are convinced that CAS makes a simple eyeball observa­
tion an effective and reliable error analysis.

REFERENCES

[1] W. Cheney and D. Kincaid, Numerical Analysis^ 2ed^ Brooks /Cole, 1996
[2] J. Keiper and R Skeel, Elementary Numerical Computing with Mathemat-

ica, McGraw-Hill, 1993
[3] S. Wolfram, Mathematzca A System for Doing Mathematics by Computer^

Addison- Wesley, 1991.

Department of Mathematics Education
Pusan National University
608-735 Pusan, Korea
E-mail: khsong@pusan.ac.kr
URL: www.mathematica. co.kr

mailto:khsong@pusan.ac.kr
http://www.mathematica

