• Title/Summary/Keyword: nonparametric Bayesian

Search Result 52, Processing Time 0.038 seconds

Nonparametric Bayesian Estimation for the Exponential Lifetime Data under the Type II Censoring

  • Lee, Woo-Dong;Kim, Dal-Ho;Kang, Sang-Gil
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.417-426
    • /
    • 2001
  • This paper addresses the nonparametric Bayesian estimation for the exponential populations under type II censoring. The Dirichlet process prior is used to provide nonparametric Bayesian estimates of parameters of exponential populations. In the past, there have been computational difficulties with nonparametric Bayesian problems. This paper solves these difficulties by a Gibbs sampler algorithm. This procedure is applied to a real example and is compared with a classical estimator.

  • PDF

Nonparametric Bayesian Multiple Change Point Problems

  • Kim, Chansoo;Younshik Chung
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.1
    • /
    • pp.1-16
    • /
    • 2002
  • Since changepoint identification is important in many data analysis problem, we wish to make inference about the locations of one or more changepoints of the sequence. We consider the Bayesian nonparameteric inference for multiple changepoint problem using a Bayesian segmentation procedure proposed by Yang and Kuo (2000). A mixture of products of Dirichlet process is used as a prior distribution. To decide whether there exists a single change or not, our approach depends on nonparametric Bayesian Schwartz information criterion at each step. We discuss how to choose the precision parameter (total mass parameter) in nonparametric setting and show that the discreteness of the Dirichlet process prior can ha17e a large effect on the nonparametric Bayesian Schwartz information criterion and leads to conclusions that are very different results from reasonable parametric model. One example is proposed to show this effect.

Nonparametric Bayesian methods: a gentle introduction and overview

  • MacEachern, Steven N.
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.6
    • /
    • pp.445-466
    • /
    • 2016
  • Nonparametric Bayesian methods have seen rapid and sustained growth over the past 25 years. We present a gentle introduction to the methods, motivating the methods through the twin perspectives of consistency and false consistency. We then step through the various constructions of the Dirichlet process, outline a number of the basic properties of this process and move on to the mixture of Dirichlet processes model, including a quick discussion of the computational methods used to fit the model. We touch on the main philosophies for nonparametric Bayesian data analysis and then reanalyze a famous data set. The reanalysis illustrates the concept of admissibility through a novel perturbation of the problem and data, showing the benefit of shrinkage estimation and the much greater benefit of nonparametric Bayesian modelling. We conclude with a too-brief survey of fancier nonparametric Bayesian methods.

Comparison of Nonparametric Maximum Likelihood and Bayes Estimators of the Survival Function Based on Current Status Data

  • Kim, Hee-Jeong;Kim, Yong-Dai;Son, Young-Sook
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.111-119
    • /
    • 2007
  • In this paper, we develop a nonparametric Bayesian methodology of estimating an unknown distribution function F at the given survival time with current status data under the assumption of Dirichlet process prior on F. We compare our algorithm with the nonparametric maximum likelihood estimator through application to simulated data and real data.

Nonparametric Bayesian estimation on the exponentiated inverse Weibull distribution with record values

  • Seo, Jung In;Kim, Yongku
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.3
    • /
    • pp.611-622
    • /
    • 2014
  • The inverse Weibull distribution (IWD) is the complementary Weibull distribution and plays an important role in many application areas. In Bayesian analysis, Soland's method can be considered to avoid computational complexities. One limitation of this approach is that parameters of interest are restricted to a finite number of values. This paper introduce nonparametric Bayesian estimator in the context of record statistics values from the exponentiated inverse Weibull distribution (EIWD). In stead of Soland's conjugate piror, stick-breaking prior is considered and the corresponding Bayesian estimators under the squared error loss function (quadratic loss) and LINEX loss function are obtained and compared with other estimators. The results may be of interest especially when only record values are stored.

A study on the Bayesian nonparametric model for predicting group health claims

  • Muna Mauliza;Jimin Hong
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.3
    • /
    • pp.323-336
    • /
    • 2024
  • The accurate forecasting of insurance claims is a critical component for insurers' risk management decisions. Hierarchical Bayesian parametric (BP) models can be used for health insurance claims forecasting, but they are unsatisfactory to describe the claims distribution. Therefore, Bayesian nonparametric (BNP) models can be a more suitable alternative to deal with the complex characteristics of the health insurance claims distribution, including heavy tails, skewness, and multimodality. In this study, we apply both a BP model and a BNP model to predict group health claims using simulated and real-world data for a private life insurer in Indonesia. The findings show that the BNP model outperforms the BP model in terms of claims prediction accuracy. Furthermore, our analysis highlights the flexibility and robustness of BNP models in handling diverse data structures in health insurance claims.

Online nonparametric Bayesian analysis of parsimonious Gaussian mixture models and scenes clustering

  • Zhou, Ri-Gui;Wang, Wei
    • ETRI Journal
    • /
    • v.43 no.1
    • /
    • pp.74-81
    • /
    • 2021
  • The mixture model is a very powerful and flexible tool in clustering analysis. Based on the Dirichlet process and parsimonious Gaussian distribution, we propose a new nonparametric mixture framework for solving challenging clustering problems. Meanwhile, the inference of the model depends on the efficient online variational Bayesian approach, which enhances the information exchange between the whole and the part to a certain extent and applies to scalable datasets. The experiments on the scene database indicate that the novel clustering framework, when combined with a convolutional neural network for feature extraction, has meaningful advantages over other models.

Nonparametric Bayesian Multiple Comparisons for Geometric Populations

  • Ali, M. Masoom;Cho, J.S.;Begum, Munni
    • Journal of the Korean Data and Information Science Society
    • /
    • v.16 no.4
    • /
    • pp.1129-1140
    • /
    • 2005
  • A nonparametric Bayesian method for calculating posterior probabilities of the multiple comparison problem on the parameters of several Geometric populations is presented. Bayesian multiple comparisons under two different prior/ likelihood combinations was studied by Gopalan and Berry(1998) using Dirichlet process priors. In this paper, we followed the same approach to calculate posterior probabilities for various hypotheses in a statistical experiment with a partition on the parameter space induced by equality and inequality relationships on the parameters of several geometric populations. This also leads to a simple method for obtaining pairwise comparisons of probability of successes. Gibbs sampling technique was used to evaluate the posterior probabilities of all possible hypotheses that are analytically intractable. A numerical example is given to illustrate the procedure.

  • PDF

A Comparative Study on the Performance of Bayesian Partially Linear Models

  • Woo, Yoonsung;Choi, Taeryon;Kim, Wooseok
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.885-898
    • /
    • 2012
  • In this paper, we consider Bayesian approaches to partially linear models, in which a regression function is represented by a semiparametric additive form of a parametric linear regression function and a nonparametric regression function. We make a comparative study on the performance of widely used Bayesian partially linear models in terms of empirical analysis. Specifically, we deal with three Bayesian methods to estimate the nonparametric regression function, one method using Fourier series representation, the other method based on Gaussian process regression approach, and the third method based on the smoothness of the function and differencing. We compare the numerical performance of three methods by the root mean squared error(RMSE). For empirical analysis, we consider synthetic data with simulation studies and real data application by fitting each of them with three Bayesian methods and comparing the RMSEs.

Semiparametric Bayesian multiple comparisons for Poisson Populations

  • Cho, Jang Sik;Kim, Dal Ho;Kang, Sang Gil
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.427-434
    • /
    • 2001
  • In this paper, we consider the nonparametric Bayesian approach to the multiple comparisons problem for I Poisson populations using Dirichlet process priors. We describe Gibbs sampling algorithm for calculating posterior probabilities for the hypotheses and calculate posterior probabilities for the hypotheses using Markov chain Monte Carlo. Also we provide a numerical example to illustrate the developed numerical technique.

  • PDF