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1  |   INTRODUCTION

Cluster analysis is a subfield of machine learning. The main 
idea was to group a set of samples in such a way that sam-
ples in the same group are more similar (in a sense) to each 
other than to those in other groups. This refers to describing 
the structural information of the data source. In the past few 
years, it has made great progress and has been implemented 
in many interesting applications [1–3].

In model-based cluster analysis, the finite mixture model is 
an exceedingly popular and powerful statistical method [4–6]. 
From a statistical perspective, the actual datasets, such as com-
puter vision, image processing, and signal processing, are often 
viewed as being generated from intractable distributions [7–9]. 
The statistical methods can estimate the parameters of the com-
plex distributions, which can accurately describe the mathemati-
cal features of the data sources and divide datasets into unrelated 
clusters. In addition, real-world datasets are sometimes insuffi-
cient, and the finite mixture model can also be used as a data 
augmentation technique to meet the needs of actual production.

The finite mixture model based on Gaussian distribu-
tions (GMM) is a well-known probabilistic tool that pos-
sesses good generalization ability and achieves favorable 
performance in practice [10–12]. On one hand, the partial 
sum of random variable sequences asymptotically follows 
Gaussian distribution owing to the central limit theorem, 
making the GMM a robust and steady method. On the other 
hand, the GMM is analytically tractable owing to the proba-
bility density function having features that are easy to man-
age. Gaussian distributions are symmetrical and unbounded, 
which potentially assumes that the values of datasets ob-
served range from negative infinity to positive infinity and 
the spread of datasets adopts symmetrical characteristics 
for some unknown samples. Furthermore, the main form of 
GMM with K components (K ≥ 1), where each component 
is built by the same type of Gaussian distribution, can be 
described as follows:

(1)p(xi|Θ)=
∑K

k=1
�kp(xi|�k),
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where xi =
(
xi1, xi2,… , xiD

)
 is a random vector with value in 

D-dimensional Euclidean space. Different values of the sub-
scripts (i) represent different samples that are independent of 
each other. Θ=

(
�1,… ,�k, �1,… , �k

)
 is the parameter set of 

GMM. �k is the probability that one sample belongs to the kth 
component, subject to the constraints 𝜋k >0 and 

∑K

k=1
�k =1. 

�k =
(
�k, �k

)
 indicates a specific Gaussian component, where 

�k represents the mean vector and �k represents the variance 
matrix.

Another challenging problem is the proper determination 
of the number of components in the finite mixture model, 
which is related to the performance of the model. The usual 
practice is to presuppose a K value, but this often leads to 
overfitting or underfitting unless the researchers have suffi-
cient empirical knowledge of the data sources and are able 
to make the right choices. To deal with these troubles, the 
Bayesian nonparametric mixture model is gradually emerg-
ing [13,14], which has the Dirichlet process as its stepping 
stone [15]. By providing the model a special prerequisite, the 
number of components is not fixed in advance, but the model 
is assumed to have infinite hybrid components which means 
it has infinite parameters. When the model updates, the com-
plexity is constantly and automatically adjusted to fit the ac-
quired datasets [16,17].

In addition, effective feature processing is of great sig-
nificance to the performance of the model. For instance, 
a combination of multi-source feature vectors has better 
practical effects than single-source feature vectors [18]. 
With the development of deep learning, unsupervised fea-
ture extraction using convolutional neural networks has be-
come increasingly popular [19–21]. One of the key points 
is the adaptability of the domain [22–24]. Compared with 
traditional feature extraction methods, convolutional neu-
ral networks can better describe deep-level spatial structure 
information.

For the inference of the models, the Monte Carlo Markov 
chain (MCMC) is a very common method used with Bayesian 
nonparametric learning from source data [15]. Although 
MCMC is effective for parameters estimation, the param-
eters converge slowly, and it is difficult to diagnose their 
convergence. This is especially true for high-dimensional 
data that requires the computation of multidimensional 
integrals. Therefore, an alternative method of variational 
inference, that is a powerful deterministic approximation 
technique and has a faster convergence speed, is proposed 
[17,25]. However, as it processes whole datasets at once, it 
is only suitable for small-scale problems and can easily gen-
erate a locally optimal solution. In this context, we propose 
an online variational inference method that can effectively 
extend to large-scale problems while ensuring effective per-
formance [26].

Motivated by the abilities of Bayesian nonparametric 
methods in dealing with model selection problem and the 

good performance obtained by the variational methods, we 
propose, in this paper, a new nonparametric Gaussian mix-
ture model for large-scale scenes clustering based on the 
Dirichlet process and parsimonious Gaussian distribution. 
Combined with neural networks [27] and online variational 
inference [26], the new framework can make full use of 
feature information, strengthen the iteration of parameters 
in the model, and achieve good performance in real-life 
applications.

The remainder of this paper is as follows: In Section 2, 
the nonparametric mixture model is fully presented. Section 
3 details the process of learning the parameters of the model 
through online variational inference. Experimental results are 
shown in Section 4. Finally, the conclusion is given in the last 
Section.

2  |   NONPARAMETRIC 
PARSIMONIOUS GAUSSIAN 
MIXTURE MODELS

2.1  |  Parsimonious Gaussian mixture 
models

Based on the local independence assumption: each element 
in xi is conditionally independent of each other given the 
category of xi [28], our framework first adds constraints to 
the variance matrix �k to construct a parsimonious Gaussian 
mixture model, in which �k is characterized by a diagonal 
structure. Thus, the probability density function p(xi|�k) in 
(1) can be written as follows:

where �k = I�k and defines precision as �k =1∕�k.
The number of parameters in the parsimonious Gaussian 

mixture model grows linearly with the data dimension, 
which is especially important in high dimension situations 
[29]. However, the number of parameters in the non-diago-
nal covariance structure is quadratic with respect to the data 
dimension in (1). To some extent, the parsimonious Gaussian 
mixture model is more flexible and efficient for high dimen-
sion data.

2.2  |  Nonparametric prior

We set the nonparametric prior knowledge of Dirichlet 
process (DP) for the model in (1), which addresses  

(2)p(xi1, xi2,∗ , xiD)=

⎛
⎜⎜⎜⎜⎝

�k1 �−1
k1

�k2 �−1
k2

∗ , ∗

�kD �−1
kD

⎞
⎟⎟⎟⎟⎠

,
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the challenging problem of selecting the appropri-
ate number of components [17]. DP can be succinctly 
described as: let G0 be a non-atomic base probability 
distribution defined on measurable space (Φ,B), and �0 
is a positive real number. A random distribution G is  
called to be G∼DP

(
�0,G0

)
, if any m-partitions {

A1, A2,… , Am

}
 of Φ with Al ∈B meets the standard 

Dirichlet distribution:

where m is a natural number.
Combined with the stick-breaking construction, we sam-

ple independently from the Beta distribution with parameters 
1 and �0. Then, the representation of G∼DP

(
�0, G0

)
 is given 

by

where 0≤�k ≤1,
∑∞

k=1
�k =1, and ��k

 denotes the Dirac delta 
measure centered at �k. Evidently, G is discrete and implies that 
the number of parameters of the model is infinite. Thus, the 
new model can be called Par-InGMM and the formula can be 
written as follows:

Furthermore, the potential vector zi =
(
zi1, zi2,… , zik,…

)
 

is raised to denote a specific hybrid component, from which 
xi is generated, and subject to the constraints: zik ∈{0,1} and ∑∞

k=1
zik =1. We enforce truncation (K) to make the model 

easier to handle. According to conditional independence and 
X=

(
x1, x2,… , xN

)
, the joint distribution between the ob-

served datasets X and hidden variables in (5) can be factorized 
as follows:

For the sake of increasing the flexibility and plasticity of 
the model, it is necessary to add some extra layers. As we can 
see, the parameter �k is defined in the loose support (0,∞),  
then a vague and flexible prior of Gamma distribution is se-
lected. And we let the Gaussian distribution be the prior dis-
tribution of �k, as shown below:

where a, b, � , m are hyperparameters like �0. Figure 1 shows the 
corresponding probabilistic graphical model, in which all cir-
cular nodes represent stochastic variables with unfixed values, 
every rectangular node indicates a confirmed hyperparameter, 
arrows display the conditional dependent relations between 
nodes, and the boxes indicate that the variables need to be in-
dependently and identically repeated a certain number of times. 
Under the Bayesian analysis, the variables in (6) can be written 
as follows:

3  |   MODEL INFERENCE

Taking the advantages of exponential family distributions 
and conjugate priors, we utilize the online variational in-
ference algorithm deduced from Reference [26] to solve 
the posterior distributions of Par-InGMM. Considering 
the variational distribution q (z, v,�, �) of the fully factor-
ization (in (10)) to approximate the true posterior distri-
bution p(z, v,�, �|X) and optimizing the parameters of q, 
we obtain the evidence lower bound objection (ELBO in 
(9)) that needs to be maximized to improve the degree of 
approximation.

(3)
(G(A1), G(A2), ∗ , G(Am))→

Dir(�0G0(A1), �0G0(A2), �0G0(Am)),

(4)
�k = vk

∏k−1

l=1
(1−vl), vk →Beta(1, �0),

G=
∑∞

k=1
�k��k

, �k →G0,

(5)p(xi|Θ)=
∑∞

k=1
�kp(xi|�k).

(6)p(X, z, v,�, �)=p(X|z,�, �)p(�)p(�)p(z|v)p(v).

(7)

p(�k�ak, bk)=
b

ak

k

Γ(ak)
�

ak−1

k
e−bk�k ,

p(�k�mk, (�k�k)−1)=

√
�k�k√
2Π

e
−

�k�k (�k−mk )2

2 ,

(8)

p(X|z,�, �)=
∏N

n=1

∏K

k=1

(∏D

d=1
N(xnd|�kd, �−1

kd
)
znk

)
,

p(v)=
∏K

k=1
Beta(vk|1, �0),

p(z|v)=
∏N

n=1

∏K

k=1
�

znk

k
,

p(�)=
∏K

k=1

∏D

d=1
Gam(�kd|akd, bkd),

p(�)=
∏K

k=1

∏D

d=1
N(�kd|mkd, (�k�kd)−1).

(9)
ELBO(q)=Eq[ log p(X, v, z,�, �|a, b, �, m, �0)

− log q(v, z,�, �)].

(10)

q(z, v,𝜇, 𝜏)=
∏N

n=1
q(znk|r̂nk)

∏K

k=1
q(vk|𝛼̂k1, 𝛼̂k2)

×
∏K

k=1

∏D

d=1
q(𝜏kd|âkd, b̂kd)

×
∏K

k=1

∏D

d=1
q(𝜇kd|m̂kd, 𝜆̂k).

F I G U R E  1   Probabilistic graphical model representation of the 
Par-InGMM [Colour figure can be viewed at wileyonlinelibrary.com]
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In the above equations, ̂rnk, 𝛼̂k1, 𝛼̂k2, âkd, b̂kd, 𝜆̂k, m̂kd are the 
corresponding parameters that determine the approximate 
distributions.

Under the knowledge of mean-field variational inference 
and conjugate prior [17], we can tractably analyze the param-
eters in (10). The local parameter r̂nk can be understood as 
the posterior probability that component k generates xn, and 
satisfies the constraints

The updated equations are

Usually, we maintain expected mass N̂k and sufficient statistics 
sk (X), sk

(
X2

)
 for each component k:

As for global parameters, there are some simple modali-
ties under the influence of the conjugate characteristic. The 
shape of Beta distribution is jointly governed by 𝛼̂k1 and 𝛼̂k2,  
as follows:

Analogously, âkd , b̂kd , 𝜆̂k and m̂kd determine respectively 
the Gamma and Gaussian distributions:

Variational posteriors are optimized by iteratively com-
puting nether expected logarithmic values until convergence:

where Ψ( ⋅ ) is the digamma function. At this point, we can eas-
ily rewrite ELBO (q) to (17).

Given sufficient statistics N̂k, sk(X) and sk(X2), we can 
easily obtain updates to global parameters for each com-
ponent. And ELBO (q) can be accurately calculated with 
extra corresponding expectations and −

∑N

n=1
r̂nk logr̂nk. 

Once summary sufficient statistics are determined for all 
components, the structure of the entire model can be de-
termined. Traditional variational inference computes sum-
mary sufficient statistics by processing whole datasets, 
which increases running time and reduces flexibility. Note 
that sufficient statistics and −

∑N

n=1
r̂nk logr̂nk have an ad-

ditive property, which implies that we can process com-
plete datasets in batches. From this point of view, we divide 
the datasets into several fixed blocks 

{
B1, B2,… , Bb

}
 and 

access those in random order. In the first pass, when ac-
cessing a single block (Bl) of datasets, we record and save 
local sufficient statistic SBl

k
= [N̂k, sk(X), sk(X2)] for each com-

ponent. And by means of additivity, we begin to construct 
and track global sufficient statistic Sk = [N̂k, sk(X), sk(X2)] 
by Sk+=S

Bl

k
. In the later pass, whenever visiting the data 

blocks, we not only update Sk with additivity, but also sub-
tract the corresponding S

Bl

k
 previously stored. As long as 

the overall sufficient statistics are obtained, we can update 
the global posterior parameters and prepare to calculate the 
subsequent local parameters. Similarly, for

we can also calculate ElBO (q) very quickly. In this way, 
the information flow between the local and the whole is 
enhanced, and the convergence speed is improved. On the 

(11)0≤ r̂nk ≤1,
∑K

k=1
r̂nk =1.

(12)

rnk = exp (Eq[ log𝜋k(v)]+Eq[ log p(xn�𝜇k,𝜏−1
k

)]),

r̂nk =
rnk∑K

l=1
rnl

.

(13)

N̂k =
∑N

n=1
r̂nk,

sk(X)=
∑N

n=1
r̂nkxn,

sk(X2)=
∑N

n=1
r̂nkx2

n
.

(14)
𝛼̂k1 =1+

∑N

n=1
r̂nk =1+ N̂k,

𝛼̂k2 =𝛼0+
∑K

j=k+1

∑N

n=1
r̂nj =𝛼0+

∑K

j=k+1
Nj.

(15)

âkd =akd +0.5×
∑N

n=1
r̂nk =akd +0.5× N̂k,

b̂kd =bkd +0.5× (
∑N

n=1
(xnd − m̂kd)2r̂nk +𝜆k(m̂kd −mkd)2)

=bkd +0.5

× (skd(X2)−2m̂kdskd(X)+ m̂2
kd

N̂k +𝜆k(m̂kd −mkd)2),

𝜆̂k =𝜆k +
∑N

n=1
r̂nk =𝜆k + N̂k,

m̂kd =
1

𝜆̂k

× (𝜆kmkd +
∑N

n=1
r̂nkxnd)

=
1

𝜆̂k

× (𝜆kmkd +skd(X)).

(16)

Eq[ log vk]=𝜓(𝛼̂k1)−𝜓(𝛼̂k1+ 𝛼̂k2),

Eq[ log (1−vk)]=𝜓(𝛼̂k2)−𝜓(𝛼̂k1+ 𝛼̂k2),

Eq[ log𝜋k(v)]=Eq[ log vk]+
∑k−1

l=1
Eq[ log (1−vl)],

Eq[ log 𝜏kd]=𝜓(âkd)− log b̂kd,

Eq[𝜏kd]= âkd∕b̂kd,

Eq[𝜇kd]= m̂kd,

Eq[ log p(xn|𝜇k, 𝜏−1
k

)]∝
∑D

d=1
(0.5 × Eq[ log 𝜏kd]

−0.5 × Eq[𝜏kd] × (xnd −Eq[𝜇kd])2),

(17)
K�

k=1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N̂kEq[ log𝜋k(v)]+Eq[ log
Beta(vk�1,𝛼0)

Beta(vk�𝛼̂k1,𝛼̂k2)
]

+Eq[ log
N(𝜇k�mk,(𝜆k𝜏k)−1)

N(𝜇k�m̂k,(𝜆̂k𝜏k)−1)
]

+Eq[ log
Gam(𝜏k�ak,bk)

Gam(𝜏k�âk,b̂k)
]

+
�N

n=1
r̂nkEq[ log N(xn�𝜇k,𝜏−1

k
)]−

�N

n=1
r̂nk log r̂nk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(18)H
Bl

k
=−

∑
n∈Bl

r̂nk log r̂nk,Hk =
∑b

l=1
H

Bl

k
,
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premise of elevating ELBO (q), birth and merge moves are 
also executed during accessing the data blocks to build a 
compact infinite mixture model (see Reference [26] for more 
details.).

4  |   EXPERIMENT RESULTS AND 
ANALYSIS

We evaluated the model on the Places365-Standard image 
set which contains 18 million train images from 365 
scene categories [30]. In our case, we randomly selected 
10 classes from Places365-Standard, with 5000 images 
per class. The size of each image is 256 × 256 pixels. We 
compare Par-InGMM with three different Gaussian mix-
ture models based on the Dirichlet process: full Gauss, 
zero-mean Gauss, and the parsimonious Gauss, with the 
prior knowledge of �k set to Wishart distribution. Three 
different feature extraction methods were used to illus-
trate the experimental results, including HOG, LBP, and 
VGG19 [27,31,32]. In addition, we took purity, complete-
ness (COM), normalization mutual information (NMI), 
V-measure and adjusted mutual information (AMI) as 
performance evaluation indicators [33–35], and com-
pared the efficiency by computation cycles after ten runs. 
Specifically, after obtaining the initial feature vector, we 
reduced the dimension to D  =  100 by PCA to facilitate 
subsequent experimental processing. We ran the provided 
codes with default settings for other models to guarantee 
fairness. For the proposed Par-InGMM, we set the initial hy-
perparameters: akd =0.91, bkd =0.28, �k =0.22, mkd =0 and  
�0 =1. Moreover we completely kept 50 epochs, initial 
K = 1 and 15 batches in the runtime.

Note that when we used VGG19 to extract image features, 
its weights are pre-trained based on the ImageNet and were 
not modified [36]. Then, we removed the top layer to obtain 
the feature vectors which fully represent the spatial and se-
mantic information of the images. Throughout the clustering 
process, the label information was not used.

Table  1 shows the performance comparison of various 
clustering algorithms based on different features, it can 
be seen that Par-InGMM always achieves relatively better 
performance in a variety of evaluation criteria except for 
completeness. Par-InGMM, combined with VGG19 fea-
ture extraction, obtains satisfactory experimental results. 
Evidently, compared with the traditional feature descriptors, 
the deep neural network extracts more applicable struc-
tural information and greatly improves the experimental 
performance.

Generalization performance is determined by the ability 
of the learning algorithm, the adequacy of the datasets, and 
the difficulty of the learning task itself. From a quantitative 
point of view, the generalization error can be decomposed 

into the sum of deviation, variance, and noise. In fact, vari-
ance measures the change in learning performance caused 
by changes in the training set of the same size, which charac-
terizes the impact of data perturbations. It is usually caused 
by the complexity of the model, as determined by the num-
ber of training samples. With this background, we analyzed 
the stability of Par-InGMM when used with deep neural 
networks for feature extraction. Specifically, we randomly 
sampled 10 datasets of the same size and calculated the out-
put variance of all corresponding models. Table  2 shows 
the experimental results, where we can see that parsimo-
nious Gaussian mixture models have stronger stability and 
anti-interference than non-parsimonious Gaussian mixture 

T A B L E  1   Performance comparison of different algorithms under 
different evaluation indexes condition on different feature processing.

Feature
Metric Alg.

Full 
Gauss

Zero-
mean 
Gauss

Par-Gauss
(Wishart)

Par-
InGMM

HOG

purity 0.226 0.252 0.265 0.356

COM 0.303 0.283 0.220 0.221

NMI 0.209 0.214 0.182 0.231

V-measure 0.195 0.206 0.179 0.231

AMI 0.144 0.161 0.151 0.220

LBP

purity 0.200 0.201 0.222 0.316

COM 0.116 0.117 0.140 0.164

NMI 0.089 0.090 0.120 0.181

V-measure 0.086 0.087 0.119 0.180

AMI 0.069 0.069 0.104 0.163

VGG19

purity 0.420 0.376 0.476 0.746

COM 0.643 0.616 0.515 0.511

NMI 0.524 0.472 0.480 0.592

V-measure 0.513 0.456 0.479 0.585

AMI 0.427 0.362 0.448 0.510

T A B L E  2   Variance comparison of different algorithms under 
different evaluation indexes condition on VGG19.

Feature 
Metric Alg.

Full 
Gauss

Zero-mean 
Gauss

Par-Gauss 
(Wishart)

Par-
InGMM

VGG19

purity 0.0042 0.0033 0.0034 0.0011

COM 0.0007 0.0003 0.00007 0.0002

NMI 0.0014 0.0012 0.0008 0.0003

V-measure 0.0020 0.0015 0.0007 0.0003

AMI 0.0031 0.0025 0.0008 0.0002
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models. This may be because the parsimonious Gaussian 
distribution reduces the number of parameters in the non-
parametric mixture models.

Concretely, Figure  2 presents the operational aspect 
of different algorithms under VGG19 feature extraction. 
We have observed two main situations. First, the parsimo-
nious Gaussian model always discovers the diversity and 
complexity of datasets faster than the non-parsimonious 
Gaussian model. Second, the increase in the number of 
components will require significantly more computing re-
sources, but under the same conditions, the parsimonious 

Gaussian model will consume less. Figure 3 shows some 
images from three random components developed by Par-
InGMM, which indicates good actual effect.

5  |   CONCLUSION

In this paper, motivated by the importance of stream-
ing data in some real-world applications, we proposed a 
Bayesian nonparametric statistical framework based on 
the Par-InGMM for large-scale scenes clustering. The 
Par-InGMM is based on the Dirichlet process, and the 
mixture components of this model are the parsimonious 
Gaussian distributions. Owing to these characteristics, the 
Par-InGMM overcomes the difficulty of model selection 
and has more flexibility compared to non-parsimonious 
Gaussian distributions. Furthermore, an online variational 
method, derived from truncated variational interference, 
was used as inference for the Par-InGMM, achieving scal-
ability. With the pre-trained convolutional neural network 
performing early feature processing, the proposed Par-
InGMM completes considerable large-scale scenes clus-
tering in real data evaluation. Experiments demonstrated 
that Par-InGMM has more evident advantages than other 
nonparametric Gaussian models for a small number of 
iterations.

F I G U R E  2   Comparison of the number of components generated 
by different algorithms during running time. The length of the 
line represents the execution time [Colour figure can be viewed at 
wileyonlinelibrary.com]
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F I G U R E  3   Three rows represent three learned components, separately. Each component shows five images
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