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Lifetime Data under the Type II Censoring

Woo Dong Leel), Dal Ho Kim2) and Sang Gil Kang3)

Abstract

This paper addresses the nonparametric Bayesian estimation for the exponential
populations under type II censoring. The Dirichlet process prior is used to provide
nonparametric Bayesian estimates of parameters of exponential populations. In the
past, there have been computational difficulties with nonparametric Bayesian problems.
This paper solves these difficulties by a Gibbs sampler algorithm. This procedure is
applied to a real example and is compared with a classical estimator.
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1. Introduction

In lifetime studies, the exponential distribution has been widely used as a model in areas
ranging from studies on the lifetimes of manufactured items to research involving survival or
remission times in chronic diseases.

Consider I exponential populations with parameters 8= (8, -, ;). The observations ¥ = (
Yy, Y,, -+, Y;) are available on these populations, where Y,=(Y,,--,Y,) is a n; X 1
vector of independent observations. Let the parameter 8; be independent draws from some
prior distribution G( - | A), characterized by a parameter A. This article studies a way to
estimate &; from the observed Y,s under type Il censoring scheme by using a

nonparametric Bayesian estimation which uses a  Dirichlet process prior. Also the derived
algorithm can be applied to type I censored data or randomly censored data.

It is well known that the asymptotic properties of the MLE (Maximum Likelihood Estimate)
and the Bayes estimate are almost same. In complex situations such as likelithood function has
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many local maximum, the MLE works poorly. But in Bayesian analysis, using the MCMC
methods, one can easily calculate a posterior distribution and a Bayes estimate. In Bayesian
analysis with parametric models, there are almost inevitable concerns about the sensitivity of
resulting inferences to assumed forms of component of distributions. These models require
specification of prior distributions for parameters, about which there is usually considerable
uncertainty. Hence it is of interest to combine the developments of modern Bayesian
approaches to nonparametric modeling of distribution functions. That is, the strict parametric
assumptions common to most standard Bayesian models can be relaxed to incorporate
uncertainties about functional forms using Dirichlet process components, partly enabled by the
approach to computation using Markov chain Monte Carlo (MCMC) methods.

The Dirichlet process prior (Ferguson 1973) is a prior distribution on the family of
distributions that is dense in the space of distribution functions. Antoniak (1974) showed that
if a Dirichlet process prior is used for G in this problem, then the posterior distribution of 6,
is sampled from a mixture of Dirichlet processes.

The Dirichlet process prior for G is determined by two parameters: a distribution function

Go( +) that defines the location of the Dirichlet processes prior, and a positive scalar

precision parameter a@. The precision parameter determines the concentration of the prior for

G around the prior guess Gp, and therefore measures the strength of belief in G,. By way

of notation we write G~IXG| Gy, @). Therefore the Dirichlet process adds a further stage to
the hierarchical model, and formally allows for the modeling of deviations away from the
specific distribution Gy. So Gy may be viewed as a baseline prior such as might be used in

a typical parametric analysis and the framework enables the analysis of sensitivity to the
assumptions of the baseline parametric model.

The introduction of MCMC methods in nonparametric Bayesian modeling was begun with
Escobar (1988) which is published in Escobar (1994). Various applied developments in the
recent vear, include works on density estimation and related matters (Escobar and West 1995),
mixture deconvolution (West and Turner 1994), applications in hierarchical and prior modeling
(Escobar 1995, West 1997), regression and multivariate density estimation (Muller, Erkanli and
West 1996, West, Muller and Escobar 1994), design (Bush and MacEachern 1996), time series
(Muller, West and MacEachern 1997), mixed generalized liner model (Mukhopadhyay and
Gelfand 1997) and accelerated failure time model (Kuo and Mallick 1998).

This paper is arranged as follows. In Section 2, we develop the Gibbs sampling algorithm
for our model using the technique of Escobar and West (1997). In Section 3, we give a
numerical result with real data analysis to illustrate our proposal.

2. The Estimation of Parameter for Exponential Populations

We interest in the estimation of parameter of exponential lifetime data under type Il
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censoring. The exponential model with parameter 4 is given by
AX| =4 exn(~ ), M

where X>0 and 6>0.

There is a situation where observations for the failure times of all the items is neither
possible nor desirable. Since life testing experiments usually destroy items at the end of the
study, items can not be used any more. Another reason is that the life testing experiment
requires a much time to obtain all lifetimes being tested. Because of time and money,
censoring is popular in life testing or reliability area. An experimenter may often have to
terminate the experiment after a certain number of units to fail instead of waiting for all the
units to fail. Samples observed in this manner are called type Il censored samples. And there
is a strong necessity for analyzing these censored sample.

Consider I exponential populations with parameter §=(6;,:-, 8;). The observation X =
(X,,+, X)) are available on these populations, where X;=(X;,--,X ) is #n; X 1 vector

of independent observations. Under type II censoring, the observed sample consists of the

ordered failure times Y ;<Y ,<--<Y, and (#,—~7,) survivors.
Let Y,=(Y,4,-,Y;,), i=1,,I and Y=(Y,,-,Y;). Then the probability density

function of Y; is

1 3 Yit(ni—r)Y,,
RYi1 )=~ () Texpl = 2 7 ). @

To develop the estimation of parameter of the exponential lifetime data under type II
censoring scheme using the Dirichlet process prior, we adapt the improved algorithm of
Escobar and West (1997).

Consider the distribution of (Y| 8;,A). We assume that the 6,'s come from G, and that
G~D(G| Gy, @). This structure results in a posterior distribution which is a mixture of
Dirichlet processes (Antoniak 1974). Using the Polya umn representation of the Dirichlet

process (Blackwell and MacQueen 1973), the joint posterior distribution of [8 | Y, A] has the
form

aGo(d6; | D)+ 2,6(db; | 6,)

- (3)
a+i—1 ’

[ag) v, Alec L AY.) 6)

where A Y;| 6, is the density or the probability function of F(Y;| ;) at @, and where
&(d6; | 6,) is the distribution which is a point mass on 6,

The above equation clarifies the effect of the precision parameter @. In the limiting case
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a—>o0, we have

161 ¥, Al 1 G,(d6;| Y., Do TLA Y1 6)Gi(d6;1 ), @

where G(d8;| Y;, AD)xAY;| 6)Gy(db;| ) is the baseline posterior, that is, the posterior
assuming §; to come from the baseline prior Gy As @ gets very small, the estimation of 6;
is a little more complicated to understand. The posterior for &; is based largely on the other
f.'s which are near Y; so that inference for §¢; heavily depends on Y; and nearest
neighboring Y,’'s.

Gibbs sampling exploits the structure of the conditional posteriors for the elements of 8,

resulting in the following conditional distribution. For each i=1, -, 1],

(dO:| 0, k+i, Y,AlxqyG(dO; | ¥, A)+ ;ﬂ;ﬁ(deﬂ 0y, (5)

where G4(8;| Y;,A) is the baseline posterior distribution, qoocaf AY;| 8)dGy(8;]| A), just

@ times the density of the marginal distribution of Y; under the baseline prior Gg( + | A),
<A Y;| 8,), the density of the marginal distribution of Y; conditional on ;= @, and the
quantities g; are standardized to unit sum, 1=g¢g;+ ;,‘qk.

In our model, we consider a baseline inverted gamma prior Gp, under which the §#,'s are
independent inverted gamma with specified shape A; and scale Ay, that is, 8;~IG(4;, A,), and
set A={A;,A;}. Then the posterior distribution for known A has [8;] Y, A] ~

IG(?’,'+ /{1, T,+ /12), where T,'= 21 Y,',“*‘ (71,"" ri)Yir,»- Thus
£
[6:1Y, 64 ki, 0. 1~ aolG(ri+ i, Tit 20) + 25045(d8; ] 6, ®)

where

g P A Ttd) a1y Ty
Gy a (n,— 7! I-'(/il) (T1+A2) r¥a, and g (ni—ri)! 8, exp 0

Next, the required computations are reduced by the fact that the distinct 8;'s typically
reduce to fewer than I due to the clustering of the &,’s inherent in the Dirichlet process
(Antoniak 1974). Using the superscript ‘*’ to denote distinct values, and suppose that the
conditioning quantities #,'s concentrate on I'<I—1 distinct values 6} with some n, taking

this common value. Then, the above formula can be rewritten as:

(d0] 5, ki, Y. AV aoGHd0;| Yo D)+ 2 miaid(a | 6, @
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with ¢gycAY;| 8;) and 1=g¢g,+ ;nqu. Besides simplifying notation, the cluster structure of

the @; can also be used to improve the efficiency of the algorithm.

When using the above conditional distribution, (7), in a Gibbs sampling algorithm, there may
occur problems if the sum of the g¢,'s becomes very large relative to gy on any iteration.
This occurs when the Markov chain has stabilized on a small number of clusters, and it is
then unlikely to generate a new value of 8. In order to prevent the algorithm from getting
stuck on a small set of #;'s in this way, it is helpful to remix the 8}'s after every step.

This improvement is used in Bush and MacEachern (1996) and West, Muller, Escobar (1994),
and it is a combination of the above algorithm with the algorithm developed in MacEachern

(1994). The combined algorithm mixes better than the Escobar algorithm alone because the 8}

's are resampled at each step providing more movement in the MCMC sampler’'s which in
turn improves convergence (See Escobar and West (1997)).

Some notation is introduced to define the remixing algorithm. Conditioning on I*, introduce
indicators S;=j if 6, =0; so that, given S;,=j and 6", y~F{(- |6;). The cluster
structure, which is called a configuration, is defined by the set of indices S={S;,-,S,}.
The set S determines a one-way classification of the data Y = {y,, -, y,} into I" distinct
groups or clusters; the n;= #{S;=;} observations in group j share the common parameter
value 8;. Now, define J; as the set of indices of observations in group j ie.,
Ji={i7: S;=7} Let Y;,=1{Y,: S;=/} be the corresponding group of observations. Once
the set S is known, the posterior analysis of the 0;’5 devolves into a collection of I’

independent analyses. Specifically, the 0}”5 are conditionally independent with posterior
densities

p(6; | Y, S, I, A)=p(6; | Y(,S,. I,A)ex ll;gf,-(yi | 6))dGy( 65, 1) (8)

for j=1,-,I". Note that this is just the posterior of 0} given several Y;'s sampled from
the F(- | &)).

Thus, in our model, the conditional posterior distributions of 0;’3 are given by

(6 1 V.S, AI~IG( 2 7it Ay, 25 Tt A2), 9)

for j=1,-,I.
The precision parameter, @, of the Dirichlet process is extremely important for the model.

When « is small, then G tends to concentrate on a few atoms of probability. When a is
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large, then G is a distribution with many support points and the nonparametric model is
closer to Gy, the baseline model. These features are to be borne in mind when considering
priors for a. If the prior for @ is a gamma distribution, we have access to a neat data
augmentation device for sampling @ (Escobar and West 1995). Let ¢ have a gamma prior
with parameters @ and b, that is, a~Ga(a, b).

At each Gibbs iteration, the currently sampled values of I" and « allow us to draw a new
value of @ by first sampling, conditionally on @ and I" fixed at their most recent values, a
latent variable 7 from the simple beta distribution (7| a,I')~B(a+1,1), a beta distribution
with mean (e+1)/(a+7+1). Then a new a value is sampled from a mixture of two
gamma distributions based on the same I and the new 7, that is,

[al 9 '~n,Gala+ T, b—log(D)+(1— 7 )Gala+ I —1,b—log(n), (10)

where the weights x, are defined in odds form by

g _ _at+I'—1
-z, ~ Kb—log(m) - an

Therefore the Gibbs sampling analysis is implemented using the following conditional
posterior distributions:

[6:1Y, Ok, ki, a, A1~ qplG(7;+ A, Tit A5) + ;iqkts(dei | 6, 12)
[6;1Y,S,A1~IG( ;_r,-+/11, ;‘Tﬁaz) (13)
[e] s ~n,Gala+ T, b—log(n)+(1—x )Gala+T —1, b— log(7)) (14)
[7la I'l~Blet1,D (15)
where
n,-! /1;1 H?’,"*‘ /11) n,~! _1_ 7 _ _T_,
QOOCa’ (n"_' rl)! I‘(/{l) (Tl+/12) 7i+ Ay and (IkOC (ni__ rl)! ( 6}3 ) eXD( 0k )-

Gibbs sampling proceeds by simply iterating through (12) - (15) in order, sampling at each
stage based on current values of all the conditioning variates.

To estimate 8, for some large m, we draw samples of H(DEHEZ’), for /=1,--,L and

estimate E[8,]| Y] by

Bi= L B0, | .0k k1) e

where E[8 5| Y,0x,, k#2] is calculated from the distribution defined in Equation (12). Or

the alternative formula could be used:

é\,’-’:_ilj Z“Gim. (17)
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Note finally that extensions to include learning about A are straightforward. For example of
such a baseline model, see George, Makov, and Smith (1994), who showed how to construct
conditional samplers to perforrn the analysis. Once this is done, the Dirichlet process

enhancement may use the same algorithm to sample A as the baseline model, but the vector

of #;'s would be substituted in for the vector of ;'s.

3. Illustrative Example

The following data are time intervals of successive failures of the air conditioning system in
Boeing 720 jet airplanes(Proschan (1963)). We assume that the time between successive
failures for each plane is independent and exponentially distributed. Using this data, we apply

the type II censoring at (7, 7y, 73, 74, 75, 75) = (21, 14, 24, 27, 23, 12) and (n,, ny, n3,
ny, ns, ng) = (24,16,29,30,27,15).

Plane 1{3,5,5,13,14,15,22,22,23,30,36,39,44,46,50,72,79,88,97,102,139,188,197,210

Plane 214,14,27,32,34,54,57,59,61,66,67,102,134,152,209,230
10,14,20,23,24,25,26,29,44,44,49,56,59,60,61,62,70,76,79,84,90,101,118,130,156,186,208,20
3310

Plane 4|1,3,5,7,11,11,11,12,14,14,14,16,16,20,21,23,42,47,52,62,71,71,87,90,95,120,120,225,246,261
Plane 5|1,4,11,16,18,18,18,24,31,39,46,51,54,63,68,77,80,82,97,106,111,141,142,163,191,206,216

Plane 612,21,26,27,29,29,48,57,59,70,74,153,326,386,502

Plane 3

The analysis is illustrated, based on baseline inverted gamma prior with A= (A}, 4;) set at
(3,200). The value (3,200) is fairly noninformative. For the precision parameter, @, we
consider two priors: Ga(0.01,0.01) and Ga(1l,1). The former prior is fairly noninformative,
giving reasonable mass to both high and low values of @ The Ga(l,1) prior favors

relatively low values of a.

Table 1 : Estimates of the @

Plane MLE BE NBE' NBE*
1 64.810 67.870 68.919 67.961
2 84.071 86.062 86.195 86.011
3 83.500 84.770 85.054 84.820
4 52.444 55.724 56.344 55.857
5 81.130 82.640 83.093 83.167
6 88.667 90.286 89.283 90.038

( BE - Baseline Model, NBE'- a~ Ga(1, 1), NBE*- e~ Ga(0.01,0.01) )
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Table 1 and Figure 1 list the Bayes estimates and marginal posteriors for &; approximated

by the Gibbs sampling algorithm using 10,000 iterations with 5,000 burn-in iterations and 5
replications. After considering sample autocorrelations, cross—correlations and the monitoring
statistic of Gelman and Rubin (1992), we were satisfied with the convergence of our
algorithm. Figure 1 displays the estimated marginal posteriors under the baseline model as the
solid line, nonparametric Bayesian model under the gamma prior, Ga(l,1) as the dotted line
and nonparametric Bayesian model under the gamma prior, Ga(0.01,0.01) as the dashed line
for @, respectively.

Also, in Table 1, MLE denotes maximum likelihood estimate, BE denotes Bayes estimator
under the baseline model, and NBE' and NBE® denote nonparametric Bayesian estimator under
two gamma priors.

Under this prior, the inclusion of the Dirichlet process does not change the posterior
distribution very much. The baseline model produces posterior distributions which are very
close to the posteriors obtained under the two Dirichlet process models. The use of the
Dirichlet process sometimes does lead to marginally increased spread in posteriors, reflecting
additional uncertainty implied by use of the Dirichlet structure. In part, the concordance arises
as the IG(3,200) prior for A is not in conflict with the observed data.
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