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Abstract
The accurate forecasting of insurance claims is a critical component for insurers’ risk management decisions.

Hierarchical Bayesian parametric (BP) models can be used for health insurance claims forecasting, but they are
unsatisfactory to describe the claims distribution. Therefore, Bayesian nonparametric (BNP) models can be a
more suitable alternative to deal with the complex characteristics of the health insurance claims distribution, in-
cluding heavy tails, skewness, and multimodality. In this study, we apply both a BP model and a BNP model to
predict group health claims using simulated and real-world data for a private life insurer in Indonesia. The find-
ings show that the BNP model outperforms the BP model in terms of claims prediction accuracy. Furthermore,
our analysis highlights the flexibility and robustness of BNP models in handling diverse data structures in health
insurance claims.

Keywords: risk management, health insurance claims, forecasting, Bayesian parametric model,
Bayesian nonparametric model, simulated data, real-world data

1. Introduction

Health insurance is becoming increasingly popular as healthcare costs rise around the world. People
buy health insurance to reduce their risk of personal bankruptcy due to medical expenses. One of
the most popular types of private health insurance is group health insurance. People tend to enroll
in group health insurance offered by their employers because it often provides coverage at a lower
premium than individual health insurance.

Meanwhile, insurers are faced with the challenge of accurately predicting healthcare claims for
risk management, liability assessment, and premium calculation. Therefore, many studies related to
claims forecasting have been conducted, but there have also been criticisms of each methodology. For
instance, a standard regression model can be applied to predict claims, yet the assumptions regarding
linearity and independence are often inappropriate for real-world data.

More recently, Bayesian parametric (BP) models, which use prior distributions to account for
the complexity of claims data, have been proposed as an alternative to standard regression models.
Bayesian models can be used for claims prediction and premium calculation through credibility. A
well-known credibility model in actuarial science is the Bühlmann model (2005). However, As stated
by Huang and Meng (2020), the BP models require data to meet certain distributional assumptions,
which are often not met in real-world data. Hong et al. (2017) also showed that the inflexibility in
considering BP model can lead to significant biases in model misspecification, particularly when it
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comes to prediction. Therefore, this has led to the application of Bayesian nonparametric (BNP) mod-
els to accommodate the inflexibility of BP models in fitting nonstandard features of the distributions
with respect to the parameters of claims data. Based on the BNP models, Zehnwirth (1979) provided
a new credibility model and its application to actuarial problems. The BNP models are constructed
from nonparametric priors that have extensive support over the space of distributions. For example,
the Dirichlet process (DP) is a popular choice for the BNP model. The application of the BNP model
using the DP was first studied by Ferguson (1973). Subsequently, Müller et al. (1996) developed the
DP into an infinite mixture model by identifying the concept of a DPMM or Dirichlet process mixture
model. Some literature such as Kottas (2006) and Cheng and Yuan (2013) studied the DPMMs for
data with a non-negativity constraint. In particular, Kottas (2006) discussed a DPMM with a Weibull
distribution, while Cheng and Yuan (2013) discussed a DPMM with a lognormal distribution.

Moreover, Fellingham et al. (2015) proposed a BNP model, namely a DPMM with a non-negativity
constraint, and implemented the model to actuarial problems. They demonstrated that the BNP model
is superior to the BP model in predicting group health claims. Hong and Martin (2017) used a DPMM
of lognormal distributions for predicting automobile insurance claims. They applied the MCMC
method to fit the model to data and presented a comparison of the performance of the DPMM model
and the gamma kernel density estimate which also has a good fit. In addition, Richardson and Hartman
(2018) considered covariate information in the BNP model to predict individual healthcare claims by
classifications of illness and showed that the BNP model can be used for pricing. A recent study of
Huang and Meng (2020) also applied the BNP model with covariates to automobile insurance claims.

Although the BNP model has been shown to outperform the BP model, the application of the BNP
model to predict group health claims is still rare compared to automobile insurance claims. One of
the contributions of this research is to show using real data that the BNP model is more effective than
the BP model in predicting group health insurance claims.

There are also fewer applications of the BNP model to insurance data from developing countries
compared to developed countries. Previous studies such as Fellingham et al. (2015) and Richardson
and Hartman (2018) applied the BNP model to healthcare data from insurers in a developed country,
namely the U.S. Hong and Martin (2017) also used insurance data from the U.S., but for automobile
insurance data. They demonstrated that the BNP model outperformed the BP model in predicting in-
surance claims of developed countries. Furthermore, Huang and Meng (2020) applied the BNP model
to automobile insurance data from developed and developing countries such as Australia, France, and
mainland China.

Therefore, this study extends Fellingham et al. (2015) by applying the BNP model to group health
insurance data from a private life insurer in Indonesia, which is a developing country. Particularly,
our data spans 2018 and 2019, and exhibits some distinct features such as a higher percentage of zero
claims and a larger number of insured per group, compared to the U.S. data.

Our findings are as follows. First, we estimate models by applying BNP and BP models to real
data in 2018, and then validating the prediction using the corresponding data from 2019. Consistent
with Fellingham et al. (2015), our results indicate that the BNP model outperforms the BP model in
predicting group health claims of an insurer in Indonesia, showing a greater accuracy. Second, in the
Bayesian models, it is necessary to obtain posterior distributions of the parameters before predicting
claims, and the integration over the distributions of parameters given the data is required. Since the
integrating is computationally challenging, we choose to simulate the posterior distributions using
Markov chain Monte Carlo (MCMC) methods. We refer to Gilks et al. (1995) for a general review of
the MCMC method and the algorithms used in both models are provided in Appendix.

The remainder is organized as follows. Sections 2 and 3 demonstrate two proposed Bayesian
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models for predicting group health claims. A Bayesian parametric (BP) model will be explained first
and then extended to a nonparametric one. In Section 4, we present two numerical examples using the
simulated and real data from a private life insurer in Indonesia to compare the performance between
two models. At last, the conclusions are summarized in Section 5.

2. Bayesian parametric model

For modeling group health claims using a Bayesian model, we first define a likelihood function and a
prior distribution of the parameters associated with this function. As noted by Fellingham et al. (2015),
we develop the likelihood function by considering the probability of zero claims and claims paid above
zero which can vary for each group. Claims paid above zero (claim severity) typically have a positively
skewed and fat-tailed distribution. To deal with these problems, we choose a mixture density function
with a probability of zero claims in group j, denoted by π j, as a zero mass and a gamma distribution
with parameters (γ j, θ j) as a distribution of claims paid above zero. The likelihood function can be
defined as follows:

GP∏
j=1

N j∏
k=1

[
π jI

(
x jk = 0

)
+

(
1 − π j

)
f (x jk | γ j, θ j)I

(
x jk > 0

)]
, (2.1)

where j is an index of group, GP denotes the number of groups, k is an index of member within a
group, N j is the number of participants in group j, and x jk is the claims paid per day of exposure per
insured (daily claims paid) in group j, and f (x jk |γ j, θ j) denotes a density function at x jk of a gamma
distribution with γ j as shape parameter and θ j as scale parameter. In more detail, f (x jk |γ j, θ j) can be
written as below:

f
(
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)
=

1

θ
γ j

j Γ
(
γ j

) xγ j

jkexp
(
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)
for γ j > 0, θ j > 0, and j = 1, 2, . . . ,GP.

In the Bayesian models, the choice of prior distributions is crucial since it affects the accuracy of
the predictions. More informative priors will result in more accurate predictions. As the first step in
specifying the prior distributions in the BP model, we need to choose the random effects distribution
for all parameters such as (π j, γ j, θ j). In such model, a random effect is a set of unobserved variables
that are assumed to be generated from a probability distribution. The distribution of the random effects
is known as the random effects distribution. The random effects distribution is a key component of
the Bayesian hierarchical models which represents the variability between groups in the data. The
random effects distribution is usually assigned a prior distribution.

Hence, considering the non-negativity constraint of the parameters in the BP model, we choose
the random effects distributions of (π j, γ j, θ j) as below. In particular, for j = 1, 2, . . . ,GP,

π j | µπ ∼ Beta
(
µπ, σ

2
π

)
,

γ j | β ∼ Gamma (b, β) ,
θ j | δ ∼ Gamma (d, δ) ,

where µπ, σ2
π, b, β, d, and δ are the hyperparameters. In accordance with Forbes et al. (2011), Beta

distribution has density function as follows:
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with 0 < π j < 1, a1 = (µ2
π − µ

3
π − µπσ

2
π)/σ

2
π, a2 = (µπ − 2µ2

π + 3µ3
π − σ

2
π + µπσ

2
π)/σ

2
π, and Be(a1, a2) =∫ 1

0 ua1−1(1 − u)a2−1du for a1 > 0 and a2 > 0.
Next, we need to specify the hyperprior distributions for the hyperparameters. In the context of

a BP model, a hyperprior distribution is a prior distribution placed on the hyperparameters of the
random effects distribution. We assume that µπ follows a uniform distribution between 0 and 1, while
β and δ follow inverse gamma distributions with parameters (2, Aβ) and (2, Aδ), respectively. Using 2
as the shape parameter for the distributions of β and δ will allow them to have infinite prior variance.
In addition, we select fixed values for hyperparameters σ2

π, b, and d. More information about choosing
hyperparameter values for our data is provided in Section 4.

In summary, the posterior for full parameters of the BP model is proportional to:
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where p(µπ), p(β), and p(δ) are the hyperpriors for µπ, β, and δ.
As is known, high-dimensional integration and unfeasible computations are required to analyze

posterior distributions of the BP model. An alternative is to use the MCMC method to generate
samples from the posterior distribution. We describe the MCMC method used for the BP and BNP
models in Appendix and its implementation on our data in Section 4.

3. Bayesian nonparametric model

The random-effects distributions for the parameters (π j, γ j, θ j) chosen for the BP model may not
be flexible enough to accommodate the distribution of the actual claims data. Moreover, it is very
difficult to choose an informative prior distribution that can fit the data well. Therefore, we assume
that a nonparametric prior distribution is used instead to capture all possible distributional shapes of
the actual claims data. This can happen because the BNP model allows the shape of the random effects
distribution to be determined by the data.

As pointed by MacEachern (2016), the Dirichlet process (DP) prior is one of the most frequently
used priors in the Bayesian models. The DP prior consists of two parameters: A precision parameter,
denoted by α > 0, which controls how close the prior distribution to G0 and a parametric baseline
distribution G0 which is same as the mean of the DP prior. A larger α value indicates a closer DP
distribution to G0. According to the DP constructive definition stated by Sethuraman (1994), if a
distribution follows the DP prior, denoted by G ∼ DP(α,G0), then with probability 1,

G =

∞∑
j=1

ω jδv j ,

where δy is a point mass distribution at y, the v j are i.i.d. from G0, and ω j are the weights that can be
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obtained through a stick – breaking process as below:

ω1 = ζ1,

ω j = ζ j

j−1∏
l=1

(1 − ζl) ,

where ζ1, ζ2, . . . ,∼ Beta(1, α). It shows that the distribution G ∼ DP(α,G0) is a discrete probability
distribution.

Next, we will define the DP priors in the BNP model. We assume that the probability of zero
claims and the distribution of claims in a group are independent. Therefore, we choose to handle
parameters π j and (γ j, θ j) separately by setting G1 as the random effects distribution for π j and G2 as
the random effects distribution for (γ j, θ j). In detail, here are the random effects distributions of the
BNP model for j = 1, 2, . . . ,GP:

π j | G1 ∼ G1,(
γ j, θ j

)
| G2 ∼ G2,

G1 ∼ DP (α1,G10) ,
G2 ∼ DP (α2,G20)

assuming each parameter is independent. The parameters, α1, α2 > 0, are the precision parameters
and G10 and G20 are the centering or parametric baseline distributions of the DP priors.

For the distributions of G10 and G20, we use the same distributions as in the BP model. In partic-
ular,

G10 ∼ Beta
(
µπ, σ

2
π

)
,

G20 ∼ Gamma(b, β) × Gamma(d, δ) ,

where the hyperparameters are assumed to follow the same distributions as in the BP model.
Next, the marginalized version of model can be found by integrating G1 and G2 over their DP

priors to get posterior inference. Then, we get the posterior for full parameters of BNP model which
is proportional to the following expression:
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) ,
where N j0 = |{k; x jk = 0}| and N j − N j0 = |{k; x jk > 0}|.

To get posterior distributions using MCMC method, we need to obtain the priors for each π j and
(γ j, θ j) first. As explained by Blackwell and MacQueen (1973), the DP priors can be constructed
using the Polya urn scheme. In particular, for j = 1, 2, . . . ,GP,
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)
, (3.1)
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Figure 1: Simulated parameters of unimodal case and multimodal case.

and
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(
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)
,

(3.2)

where gm0 is the density function corresponding to Gm0 for m = 1, 2, and I(·) is the indicator function.
The expressions in (3.1) and (3.2) are used as the proposal distributions to draw posterior samples

of the parameters in the MCMC method. The parameters are generated from the centering distribu-
tions Gm0 with probabilities αm/(αm + GP–1) or from the previous values of other parameters with
probabilities (αm + GP–1)−1 for m = 1, 2. Then, posterior predictive samples can be generated by
using the posterior samples of the parameters and according to likelihood function in (2.1).

4. Numerical data analysis

4.1. Simulated data

Two cases of data are generated to describe the possible distribution shapes of parameters in real
data, particularly the unimodal case and the multimodal case. The random effects parameters of the
unimodal case are drawn from unimodal distributions while the random effects parameters of the
multimodal case are drawn from multimodal distributions.
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Table 1: MSE of all groups in the simulated data

Model Unimodal case Multimodal case
BP 0.689 82.386

BNP 0.204 9.254 × 10−6

To obtain simulated data, we first generate the random effects parameters (π j, γ j, θ j) from the
distributions mentioned below to reflect the real claims data used in Section 4.2. Then, simulated data
are drawn for 100 groups and 100 observations in each group using these parameters and according
to likelihood function (2.1). All draws are assumed to be independent.

The first case is the unimodal case. In here, the π j are produced from a Beta distribution with
parameters (4, 5), the γ j from a Gamma distribution with parameters (2, 0.125), and the θ j from a
Gamma distribution with parameters (2, 15000). While for the multimodal case, the π j are generated
from a mixture distribution of Beta(80, 20) and Beta(20, 80) with equal weight, the γ j from a mixture
distribution of Gamma(2, 100) and Gamma(50, 100) with equal weight, and the θ j from a mixture
distribution of Gamma(1000, 1) and Gamma(30000, 1) with equal weight. After generating the pa-
rameters, the data are drawn using the likelihood function (2.1). After that, the data are analyzed
under both the BP and BNP models.

For analyzing the BP model in both the unimodal case and the multimodal case, we use the fol-
lowing fixed values for hyperparameters, specifically σ2

π = 0.03, b = d = 2, Aβ = 3, Aδ = 100. Even
though, the sensitivity analyses shown by Fellingham et al. (2015) indicate that the other values of
these parameters will actually result in the same posterior distributions. Furthermore, we remove the
first 50,000 iterations (or use burn-in of 50,000 iterations) and keep every 10th draw from 100,000
posterior draws after burn-in.

For fitting the BNP model, we also apply the same values of hyperparameters for the centering
distributions and choose α1 = α2 = 2. Then, we discard the first 10,000 iterations (or used burn-in of
10,000 iterations) since it takes longer time to get the result than in the BP model.

The plots of the simulated parameters and posterior densities under both BP and BNP models are
given in Figure 1. The histograms plot the generated parameters, the dashed lines fit the BP model,
and the solid lines fit the BNP model. We can see that both the BP and BNP models are able to capture
the shapes of parameters quite closely in the unimodal case. While in the multimodal case, the BNP
model is superior to the BP model in replicating the modes of parameters. The BP model will not
replicate the modes of parameters unless we define it explicitly in the random effects distribution. On
the other hand, defining multiple modes is not necessary under the BNP model since the DP priors
can capture all distribution shapes of the parameters.

Next, following Albert (2009), we perform posterior predictive checks to check the convergence of
the BP and BNP models. One way to perform the posterior predictive checks is to compare summary
statistics or visualization of posterior predictive densities. First, we generate posterior predictive
samples using the likelihood function (2.1) for all groups in the simulated data and compare the
performance of both the BP and BNP models by comparing the mean square error (MSE) value.

The formula used for calculating MSE is as below:

MSE =
1

GP × N j

GP∑
j=1

N j∑
k=1

(
x jk − x̂ jk

)2
, (4.1)

where x jk is the claim amount drawn using generated random effects parameters (π j, γ j, θ j) while x̂ jk

is the claim amount drawn using simulated random effects parameters (π̂ j, γ̂ j, θ̂ j) under the BP or BNP
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Figure 2: Cross-validated posterior predictive densities for simulated data.

Table 2: MSE of one group in the simulated data

Model Unimodal case Multimodal case
BP 4.680 0.042

BNP 0.419 0

models. The results of MSE values are shown in Table 1.
A better model will result in smaller MSE value. Table 1 displays that MSE values under the BNP

model for both the unimodal case and the multimodal case are smaller than MSE values under the BP
model. This indicates that the BNP model has greater accuracy in predicting claims of simulated data
than the BP model.

Then, we choose one group from simulated data for both cases and draw posterior predictive
densities as can be seen in Figure 2. The histograms plot the generated claims amount, the dashed
lines fit the BP model, and the solid lines fit the BNP model. Obviously, we can observe that posterior
predictive densities under the BNP model are closer to the real data than posterior predictive densities
under the BP model.

Again, we also examine the MSE values as shown in Table 2. This table reveals the same results
as before where the MSE values under the BP model are greater than the MSE values under the BNP
model. Therefore, it can be concluded that the BNP model outperforms the similar BP model in
predicting claims of simulated data.

4.2. Real data from a private life insurer in Indonesia
4.2.1. Summary of data

The actual data used is group health claims data from a private life insurer in Indonesia from poli-
cies in 2018 and 2019. All claim severities are presented in Indonesian currency, namely Indonesia
Rupiah or IDR. As demonstrated by Fellingham et al. (2015), the proposed Bayesian models in this
study are useful for modeling claims of medium-sized groups. For that reason, we filter the data by



A study on the Bayesian nonparametric model for predicting group health claims 331

Table 3: Descriptive statistics of real data from policies in 2018 and 2019

Data Year n insured n group Mean Std. Dev. Maximum Skewness Kurtosis µπ
All 2018 9,338 112 3,224 13,440 463,333 13.47 284.93 67.18%

Groups 2019 8,843 47 4,951 21,101 728,832 15.72 379.38 56.09%
Company 2018 162 1 6,350 15,308 171,800 8,30 85,90 29.01%

F 2019 193 7,369 14,865 101,027 3,89 17.18 56.09%

excluding two large-sized groups with more than 10,000 insured per group. The types of insured in
our data consist of employees and their dependents such as spouses and children. In more detail,
Table 3 represents the descriptive statistics of real data in both 2018 and 2019 from all groups and one
representative company that will be used in further analysis.

Table 3 provides some statistics such as the number of participants (insured), number of groups,
µπ or the mean of proportion of zero claims per group as well as the mean, standard deviation, and
maximum value of claims paid per number of days of policy in force per insured for all groups in the
dataset. This table reveals that around 67% of all participants do not submit a claim in 2018. While in
2019, participants are more likely to submit claims compared to 2018 which can be seen in the smaller
portion of zero claims. Other statistics like the mean, standard deviation, and maximum value of daily
claims paid in 2019 are greater than in 2018. Besides, the number of groups in 2019 is less than in
2018 as well as the number of participants. In addition, skewness and kurtosis in Table 3 indicate that
our data has right-skewed and heavy-tailed distibutions in both years.

As previously mentioned, our data is from an insurer in a developing country. Since our data
has some different characteristics compared to the data from an insurer in a developed country used
by Fellingham et al. (2015), we want to check the efficacy of the BNP model over the BP model in
modelling claims using our data. Some distinct characteristics are as follows. The proportion of zero
claims from all groups in our data is around 60%, while in a developed country data is only around
30%. The average number of participants in the first year of our data and a developed country data is
83.3 and 8.3, respectively. Due to currency differences, our data has larger claims amount which will
affect the distributions of the parameters. Also, we include employees, spouses, and children in our
data, while they only include the employee plus one individual for each policy.

As mentioned before, our data is from an insurer in a developing country. Since our data has
some different characteristics compared to the data from an insurer in a developed country used by
Fellingham et al. (2015), we want to check the efficacy of the BNP model over the BP model in
modelling claims using our data.

4.2.2. Analysis

In the context of this study, we only analyze the renewal groups or the existing groups from the
previous year. Also, we exclude some groups which have no claims and obtain 25 groups to be
analyzed. For fitting both BP and BNP models, we use the same hyperparameters as simulated data,
specifically σ2

π = 0.03, b = d = 2, Aβ = Aδ = 3. Then, we use burn-in of 50,000 iterations and
keep every 10th draw from 100,000 posterior draws after burn-in for the BP model and use burn-in of
10,000 iterations for the BNP model. Also, α1 = α2 = 3 are applied for the centering distributions of
the BNP model.

Figure 3 below gives the plot of posterior distributions for π∗, γ∗, and θ∗ for renewal groups
where the solid and dashed lines fit the BNP and BP models, respectively. It is easy to see a multi-
modality behavior shown by the BNP model in the distributions of the parameters which is similar to
the multimodal case described in Section 4.1. Under the BP model, it is almost impossible to find a
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Figure 3: Posterior densities for real data.

multimodality behavior since it is in the distribution of the parameters not the data.
Furthermore, we choose one company called company F as the most representative group in 2018

and 2019 and predict its claims under the BP and BNP models. As displayed in Table 3, Company F
has 162 participants in 2018 and 193 participants in 2019. We do not consider the presence of the same
participants in both years. For the analysis, we obtain the posterior predictive densities of company
F using the corresponding parameters (π j, γ j, θ j) and according to likelihood function in (2.1). The
results are given in Figure 4 where the histograms here plot the daily claims paid of company F, the
dashed lines fit the BP model, and the solid lines fit the BNP model.

Additionally, we compare both BP and BNP models by calculating the absolute value of mean
difference between the actual and predicted claims of company F and MSE values of claims paid
using the formula as in (4.1). We obtain the results as can be seen in Table 4.

In our results, under the BP model, it has an absolute value of mean difference of 3,430 and MSE
of 9.857 ×105. While under the BNP model, it has a smaller absolute value of mean difference than the
BP model at 1,358 and also a smaller MSE at 1.928 ×105. Obviously, this indicates that the predicted
values under the BNP model are closer to real claims amount. This finding is in line with the results
from simulated data and shows that the BNP model is better than the BP model in predicting group
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Figure 4: Cross-validated posterior predictive densities for real data.

Table 4: MSE of a representative group in real data

Model |E[X] − µ| MSE
BP 3,430 9.857 ×105

BNP 1,358 1.928 ×105

health claims of an insurer in Indonesia.

5. Conclusion

One of the most commonly used models to predict claims in the insurance industry is the BP model.
However, the BP model is not flexible enough to accurately capture the complex distributions of health
insurance claims. To overcome this limitation, the BNP model has been proposed, which employs a
flexible prior distribution and offers a higher accuracy in predicting health insurance claims.

In the context of group health insurance, the BNP model proposed by Fellingham et al. (2015)
is superior to the BP model in predicting claims in a developed country. The BNP model is capa-
ble of capturing the unique characteristics of health insurance claim distributions such as heavy tail
and skewness, through the likelihood function, and can also accommodate the multimodality of the
parameter distribution.

In this study, we implement this BNP model to predict group health insurance claims in Indonesia
and compare its performance with a BP model. Our findings show that the BNP model is more
suitable for describing non-standard forms of distributions, especially multi-modality behavior, in the
posterior distributions of real data in a developing country. In contrast, the BP model cannot predict
such behavior. Therefore, the use of the BNP model can improve risk management for insurers.

However, this study also has some limitations as follows. We only implement the Bayesian models
for predicting actual claims for an insurer in a developing country for the renewal groups. To predict
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claims for new business groups, different models need to be developed. Furthermore, since we only
focus on the performance of the BP and BNP models, covariate information is omitted. Therefore,
considering the possibility of covariates in all models can improve the results of this study in the
future.

Appendix A: MCMC method

As mentioned earlier, the posterior distributions for both BP and BNP models can be obtained by
applying the MCMC method. Specifically, the Metropolis-Hastings (M-H) algorithm involves to
solve multivariate distributions in the Bayesian models. The M-H algorithm produces a Markov chain
based on a proposal distribution.

For instance, we want to produce samples from a posterior distribution p(θ) which is proportional
to g(θ), or denoted by p(θ) ∝ g(θ), then we need to select the initial value θ0 and repeat the following
steps for i = 1, . . . ,m times.

1. Generate a candidate from a proposal distribution θnew ∼ q(θnew|θi−1), where the proposal distribu-
tion may rely on the value of θi−1 and can have any form.

2. Accept the candidate value or set θi = θnew with probability:

α = min
[
1,

g(θnew)q(θi−1 | θ
new)

g(θi−1)q(θnew | θi−1)

]
,

and θi = θi−1 with probability 1–α.

We have to note that the distribution will be stationary to p(·). Discarded some samples or called
burn-in samples is intended in the MCMC method to get its stationary distribution.

MCMC algorithm for the BP model

Predicted data under the BP model can be obtained by drawing new parameters using the marginalized
version of the model. We first do MCMC iterations to obtain the current values of hyperparameters.
We use a normal proposal distribution with the current state as mean and a fixed variance to draw the
new hyperparameters. Then, given the current hyperparameters, new parameters (π∗, γ∗, θ∗) are drawn
from their random effects distributions. Next, predicted values are generated from function (2.1) using
new parameters (π∗, γ∗, θ∗).

MCMC algorithm for the BNP model

In the BNP model, we use density functions defined in (3.1) and (3.2) as the proposal distributions to
draw new parameters of π∗ and (γ∗, θ∗) respectively for the renewal groups. Below are the details of
MCMC algorithm to obtain π∗ for each group j = 1, 2, . . . ,Gp.

1. Let πold
j be the current value of π∗j .

2. Draw a candidate πnew
j from a proposal distribution defined in (3.1).

3. Accept the candidate value or π∗j = πnew
j with probability:

q1 = min

1, (πnew
j )N j0 (1 − πnew

j )N j−N j0

(πold
j )N j0 (1 − πold

j )N j−N j0

 ,
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where N j0 = |k; x jk = 0|, N j − N j0 = |k; x jk > 0| and set π∗j = πold
j with probability 1–q1.

4. Repeat the above steps a few times.

Next, we need to update the (γ j, θ j) for each j = 1, 2, . . . ,GP following the steps below:

1. Let (γold
j , θold

j ) be the current value of (γ∗j , θ
∗
j).

2. Draw a candidate (γnew
j , θnew

j ) from a proposal distribution defined in (3.2).

3. Set (γ∗j , θ
∗
j) = (γnew

j , θnew
j ) with probability:

q2 = min

1,
∏
{k;x jk>0} f (x jk | γ

new
j , θnew

j )∏
{k;x jk>0} f (x jk | γ

old
j , θold

j )

 ,
and (γ∗j , θ

∗
j) = (γold

j , θold
j ) with probability 1 − q2.

4. Repeat the above steps a few times.

Then the predicted values for each renewal group are drawn from function (2.1) using new parameters
(π∗, γ∗, θ∗).

Appendix B: Burn-in length

As previously stated, burning of some samples is intended in the MCMC method. A longer burn-
in may allow the chain to reach its stationary distribution and improve convergence. Therefore, to
determine the appropriate burn-in length for the BNP model, we compare model performance using
two burn-in lengths: 1,000 iterations and 10,000 iterations. The results of the comparison on simulated
data can be seen in Table B.1. Meanwhile, the comparison for one group of real data is shown in
Table B.2. Both tables indicate that using burn-in of 10,000 iterations is better than burn-in of 1,000
iterations for the BNP model. The large MSE value on real data is caused by the currency used for
the claim amount.

Table B.1: MSE of BNP model for simulated data per burn-in length

Data Unimodal case Multimodal case
1,000 burn-in 10,000 burn-in 1,000 burn-in 10,000 burn-in

All groups 5.295 ×108 0.204 2.179 ×108 9.254 ×10−6

One group 1.881 ×108 0.419 0.839 ×106 0

Table B.2: MSE of BNP model for real data per burn-in length

Data MSE
1,000 burn-in 10,000 burn-in

BNP 4.655 ×108 1.928 ×105
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