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Nonparametric Bayesian Multiple Change Point
Problems

Chansoo Kim' and Younshik Chung?

ABSTRACT

Since changepoint identification is important in many data analysis prob-
lem, we wish to make inference about the locations of one or more change-
points of the sequence. We consider the Bayesian nonparameteric inference
for multiple changepoint problem using a Bayesian segmentation procedure
proposed by Yang and Kuo (2000). A mixture of products of Dirichlet pro-
cess is used as a prior distribution. To decide whether there exists a single
change or not, our approach depends on nonparametric Bayesian Schwartz
information criterion at each step. We discuss how to choose the precision
parameter(total mass parameter) in nonparametric setting and show that
the discreteness of the Dirichlet process prior can have a large effect on the
nonparametric Bayesian Schwartz information criterion and leads to conclu-
sions that are very different results from reasonable parametric model. One
example is proposed to show this effect.

Keywords: Mixture of Dirichlet process, multiple changepoint, nonparametric
Bayesian Schwartz information criterion.

1. Introduction

Changepoint identification is important in many data analysis problem, such
as signal processing, industrial system, economics, medicine etc. Several ap-
proaches to the changepoint problem have been published including nonparamet-
ric and parametric approaches. These are Hinkley (1971), Pettitt (1980) and
Zacks (1983). The related works of Bayesian approach are presented by Cher-
noff and Zacks (1964), Smith (1975). A Gibbs sampling approach to Bayesian
inference for single changepoint problem was presented by Carlin et al. (1992)
and Mira and Petrone (1996). However, for long data sequences, the problem of
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multiple changepoint has not been considered by many authors, in part because
of the difficulty in handling the computations.

The aim of this paper is a fully nonparametric Bayesian approach and we
wish to make inference about the location of one or more changepoints of the
data sequence. Let x = (z1,---,z,) be a realization of the sequence of random
variables X = (X1, ---, X,) of length n. The random variables have a distribution

function with no change

n
P (X1 < 1,00, Xn < 2ol F) = [[ F(z). (1.1)

1=1

If we may have only a vague opinion on the parametric form of the distribution
function F', then the nonparametric model might be more appealing. There-
fore, we approach the nonparametric extension by assigning, conditional on 6, a
Dirichlet process prior on the family F of all probability distribution in such a
way that the conditional mean of F given 6 is Fy(-|6). Therefore, the support of
the prior distribution is large, including all distributions on the real line. This
larger support allows a wide range of shapes for F and produces a more flexible
estimator.
If the change-point is occurred at any position ¢, then the model is

c n
PT(Xlg.'El,"',anmnIC,Fl,FQ):HFl(-’Ei) ]:[ F2(‘,L‘i)’ (12)
i=1 i=c+1

where the vector of random probability measures (Fp, Fy) is distributed as a
mixture of products of Dirichlet processes with parameters a;(+;61) and a(+;69).

To decide whether there exists a single change or not, this approach depends
on nonparametric Bayesian estimates of Schwartz information criterion(NBSIC).
The original Schwartz information criterion(SIC) (1978) is defined as —2In L(4| D)
+plnn where L(6) is the likelihood function for the model, § is a ML estimator of
unknown parameters &, p is the number of unknown parameters to be estimated
and n is the sample size. In order to define NBSIC, our measure depends on the
Bayesian estimate of Schwartz information criterion(BSIC),

BSIC = /(“’ZIHL(QlfL‘l, 7$n) +p1nn)[9|;c1, 7xn]d97 (13)

where L(6|D) is a likelihood function and p is the number of unknown parameters
to be estimate. Using Bayesian binary segmentation procedure, Yang and Kuo
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(2000) consider the multiple change positions for homogeneous Poisson process
with BSIC. We will denote NBSIC under the model (1.1) and (1.2) as follows

*

n

NBSIC(O|z, -+ ,zy) = /(—21n{mna(xi;9)(mz( e)+1)[n,_u}
’ i=1

X[0|z1,- - ,2,)d0 + p11nn, (1.4)

where p; is the number of unknown parameters to be estimate. And for a possible
change, j =1,--- ;n — 1, in the model (1.2)

NBSIC(j|D) = /—Zln R91 Ha1 z;; 01) (my(z; 91)+1)[ 1]

1
XW—‘— H ()[2 1131,92) (ml( 92) + 1)[711'—1]
1=j+1
Xd[91,92|D] + p2 lnn, (15)
where D = (z1,---,z,) and py is the number of unknown parameters to be
estimated. (m;(z; : 6;) + 1)[n,»—1] = a'j(zi; 6;) if z; is an atom of ¢, 0 otherwise

and n; is the number of observations equal to z; and ol*! = a(a—1) - (a+k—1)
and the * indicates that the product is taken over distinct values only. And [6]D]
denote a posterior distribution.

If NBSIC(0|D) < mini<;j<n—1NBSIC(j|D), we conclude that there is no
changepoint. We only estimate the distribution function and parameters in the
model (1.1). If NBSIC(0{D) > min;<j<p-1 NBSIC(j|D), for some j, we conclude
that there is the single changepoint ir the data sequence and estimate the location
of changepoint in the mode] (1.2). For the next step, we divide the data sequence
into two subsequences according to the changepoint position. We apply the pro-
posed method to each subsequences D, = (z1,--- ,z.) and De = (Teq1, -+ ,Zn)
and then continue the process until no more changes are found in any of the
subsequences. In order to overcome the computational difficulties, Markov chain
Monte Carlo method is used. In this paper, our objective is to find the loca-
tions of the changepoints based on the nonparametric Bayesian approach and
discuss the discreteness of the Dirichlet process prior. The paper is organized
as follows. Section 2 introduces the nonparametric Bayesian formulation on the
Dirichlet process prior for the changepoint problem and discusses how to choose



4 Chansoo Kim and Younshik Chung

the precision parameter a(the total mass parameter). Finally, in section 3, our
methodology is applied to an artificial data.

2. Nonparametric Bayesian Formulation

2.1. Nonparametric setup

Let x = (z1,--- ,z,) be a realization of the sequence of a random variable
X = (Xy, -+ ,Xyn) of length n. Given the observation, we assume that there is
no change and unknown distribution function. Then the model has the following

form.
Model 1 :

n
P (X1 <z, , Xn <z|F) = [[F=),

1=1
Flo ~ Dlaf-10)),
9 ~ H(H), (2.1)

where D is a Dirichlet process. For a fixed 8, the parameter of the process is
the measure a((oc0, z}|6), z € R, which, for simplicity, we will indicate by a(z|6).
Likewise, note that a(R|6) = a(oo|f) for total mass parameters. The parameter
space © is the d-dimensional random vector with distribution function H(€).

If a single changepoint is occurred at any position ¢, then the model is as

follows.
Model 2 :
C n
Pr(X1 <21, , Xn < zp|F1, F2) = HFl(ivi) H Fy(zs),
=1 i=c+1
1, F)601,02 ~ D(ai(-61))D(a2(-62)),
01,60 ~ H(6,02), (2.2)

where the vector of random probability measures (Fp, Fy) is distributed as a
mixture of products of Dirichlet processes with parameters ay(-;601), aa(-;6;)
and mixing distribution H(61,6s), if given ©; = 6; and Oy = 6, F; and F;
are independently distributed as a Dirichlet process of parameter ay(-;61) and
ap(+; 02) respectively, written

(F1, F3|01, 0] = D(a1(-;61))D(aa(+;62)).
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Under Model 2, Mira and Petrone (1996) considered a hierarchical Bayesian
nonparametric inference for a single changepoint ¢. We consider nonparametric
Bayesian method for locating a multiple change in the given data sequence and
show that the discreteness of the Dirichlet process prior can have a large effect on
the nonparametric Bayesian Schwartz information criterion and leads to conclu-
sions that are very different results from reasonable parametric model. To define
the nonparametric Bayesian estimate of Schwartz information criterion, we need
the likelihood functions of Model 1 and Model 2. Therefore, the following lemmas
give the likelihood functions for each model.

Lemma 2.1. Assume that 8 € R%, o(-;0) is absolutely continuous with respect to
Lebesgque measure with density o (;8). Then the likelihood function of z1,--- ,Zn
given 8 is

(1, 2nl0] = Ha 233 60) (mi(2:;0) + Dy, _q) (2.3)

where (m;(z; : ) + 1)[7“_1] = o (2;;0) if z; is an atom of , 0 otherwise and n;
is the number of observations equal to z; and o = a(a—1)--- (a+k —1) and
the * indicates that the product is taken over distinct values only.

The derivation is based on Lemma 1 of Antoniak (1974). From Lemma 2.1,
it follows that the posterior distribution of 8 given z1,--- ,Zn, is proportion to

Blz1,- - zp) o< (21, ,z,|0]dH(6). (2.4)

We assume that a single changepoint is occurred under the model (2.1). From
the model (2.2), we get a likelihood function of 8; and 8, given z;,--- , Zp.

Lemma 2.2. Assume that 6, and 8, € R® and let o;(-;61) and as(-;62) be
absolutely continuous with respect to Lebesgue measure with densities a&(-;@l)
and a'2(-;€2), respectively. Then the likelihood of c, 0,02 given (z1, -+ ,zy) is

[xl,... ,zn|c,91,02] Hal .7,‘2,91 mz( i:91) +1)[ni_1]

R91

1
XW ]:-[l-1 Qg -7/'1762) (ml( ;. 02) —+ 1)[711‘—1]’

where ol = a(a —1)--- (a+k — 1) and the * indicates that the product is taken
over distinct values only.
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Lemma 2.2 is a sequence of Lemma 1 of Antoniak (1974) and is equivalent to
the Proposition 1 of Mira and Petrone (1996). To identify and to estimate how
many changepoints are occurred, we need to define the nonparametric Bayesian
estimate of Schwartz information criterion(NBSIC). This measure depends on
the Bayesian estimate of Schwartz information criterion(BSIC). This measure is
given in (1.3). If the likelihood L(6|D) has no changepoints, then from (2.3)
and (1.3), the nonparametric Bayesian estimate of SIC(NBSIC) is defined by the
following form

N

1

x [0]z1, - ,2q]d8 + pilnn, (2.5)

where p; is the number of unknown parameter.
For a given changepoint, we consider the j** intermediary likelihood of ¢, 61, 6,
given (z1, - ,Zn), which is obtained as, for j =1,--- ,n—1,

(1, rcnlc = 7,01,92]

= R 01 Hal :L‘,,@l ml( I; :9]_) + 1)[ni_1]

1
w————1~||aymﬁﬂmxiﬂﬂ+nm4. (2.6)
2(R; 62)n7 12 [ri-1]

According to the definition of (1.3), we define NBSIC(j|z1, -+ ,z,) as
NBSIC(j|D) = /—2111[551,"' , Tnlc = 7,01, 0:][01, 02| D]d61df3 + p2 Inn, (2.7)

where D = (z1,--- ,%,) and py is the dimensions of (61,602). [z1, - ,zZnlc =
J,01,62] is given in (2.6).

To estimate NBSIC(0|D) in (2.5) and NBSIC(j|D) in (2.7), we can use a
Gibbs sampler. Let ¢ denote the value in the t** iteration for t = 1,---,T in
the Markov chain Monte Carlo. A Monte Carlo estimates of NBSIC(0|D) and
NBSIC(j|D), for j = 1,--- ,n—1, with direct substitution from the Gibbs sampler
are

NBSIC (0|D) = n[zy, ++ ,za]0] + p1lon, (2.8)

an
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and forj=1,--- ,n—1,

T
= 1
NBSIC(j|D) = 7 )  —2In[z1, - ,znlc = j,01,02] + p2Inn, (2.9)
T o=l
where [z1, -+ ,z,]0] and [z1, -+ ,zalc = J,601,602] are given in (2.3) and (2.6),

respectively.

If N@C(OID) < minlSan_lNgs\IC(le), we conclude that there is no
changepoint in the original sequence, we just only estimate the distribution func-
tion F' and stop the procedure. If N§S\IC(0|D) > minlgjgn_lngs\IC(j[D),
for some j, we conclude that there is the single changepoint in the original
sequence, estimate the changepoint, ¢ = k' position of data which satisfies
Ng\SIC(k[D) = minlSan_lNgs\IC(le).

For the next step, we divide the original sequence into two subsequences :
D, = (z1,+* ,z.) and D, = (Zeq1, -+ ,2n). For the two subsequences D, and
D,, changepoint, as like in the original sequence, and continue the process until
no more changes are founded in any of the subsequences.

The detailed algorithm is as follows.

1. The first step :

(1a) We consider that there does not exit a changepoint, D = (z1,--- ,z,). From
the model 1, we generate 8 and F' using Gibbs sampler. The full conditional
distribution(FCD) are

/ n
[F|6,D] ~ D ( af;0) + Zfizi(-)) ;
[0|F, D] o Ha 233 6) (mi(mi : 6) + 1),y (D),

where h(6) is a density function of §.

A

NBSIC(0|D) = =

rn

21ln[zq, - ,xnlﬁ(t)] +p1Inn.

M’ﬂ

|

t=1

(1b) We assume that a single changepoint is occurred at any position, j =
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1,---,n—1. From the model (2.2), the FCD are

[F1161, 02, F3, D] ~ (al 161) +Z5z, )7

[F3101,02, F1, D] ~ D | as(;62) + Z oz (1) |
i=j+1

[O|F1, F3, D] 391 HOtI zi;01) (mi(zi - 01) + 1),y
1
- - ;0 i(z;: 0 1) _h(61,62).
 aa(R; 0] --,HHM e ) Dy 10

where © = (6,0s). Therefore for j =1,--- ,n — 1,

T
NBSIC(j|D) = 7. Y ~2Infar, - zale = 5,6, 6] + palnn.

t=1

(lc) If N§S\IC(O|D) < minlstH_lNgS\IC(j]D), we conclude that there is no
changepoint in the original sequence, we just only estimate the distribution of F
and the parameter § and then stop the procedure. Otherwise, we conclude that
there is the single changepoint and go to the second step.

2. The second step : We have estimated the changepoint, é = k, which satisfies
NI?S\IC(kID) = minlsjs,l_lNE/SS\IC(j]D). According to ¢, we divide the original
data into two subsequences, say Dy = (71, ,7¢) and Dy = (Tpy1,--- ,Zn)-
(2a1) For the first subsequence Dy = (z1,- - ,T), applying the step (1a) in the
first step is applied again. Therefore, the FCD are

k
[F|6,D] ~ D <a(-; )+ 5$,.(-)) ,

i=1
k*
[8|F, D] ;Ha’(:ﬂ-'ﬁ) (mi(z; : ) + 1) h(8)
’ a(R; 0)*] e b B\ [ni-1] ’
where k* is the number of distinct values on 1,2, ---, k. Then the estimate of

NBSIC(0|D) is obtained in similar way by

T
= 1
NBSIC(0|D) = T Z —2n[z1,- - ,2,|0®] + p1 Inn.
t=1
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(2a2) We assume that a single changepoint is occurred at any pos1t1on jyJ =
1,+-+,k~1. By the similar way in the step (1b), the FCD are, forj =1,--- ,k—1,

J
[FIIGI,HQ;FQ:DC} ~D (a1(~;91) +ZJ$5(')) s

k

[F5)61,62, F1, D] ~ D | aa(502) + Y 6,() |,
i=7+1
(617, 2, De] o« 91 Ha1 zi; 02 01) + Doy
1 E
X W _];[*-1 O(2 .’Ez,gg) ('ml( ZT; 92) —+ 1)[ni_1]h,(91,92),
T

=y 1 ¢

NBSIC(j|D.) = i;—ﬂn[m,---  znle = 3,6, 60] + py Inn.

(2a3) we conclude as like (1c) in the first step.

(201) Dy = (®Tk41, - »Tn), the steps (2a1)-(2a3) are applied again to the data
Dy.

3. The third step : We continue the above processes until no more changes are

found in a way of each subsequences.

2.2. Choosing the total mass «

This section shows that the discreteness of the Dirichlet process prior can
have a large effect on the nonparametric Bayesian Schwartz information criterion
and leads to conclusion that are very different results from reasonable parametric
models.

First, let o (z;;6) in (2.5) and o) (z:;6;) and oy(z;;62) in (2.6) be afo(zs|d),
o1 f1(zi]01) and agfa(z;|6,), respectively, where o = a(R|6), a1 = a1(R|f), ag =
a9 (R|0) for the total mass parameters and fg, f1 and fo in model (2.1) and (2.2)
are the baseline distributions. Also, we consider that all observations are distinct
values for simplicity. Then the NBSIC(0|D) and NBSIC(j|D) are expressed
respectively by

I n

NBSIC(0|D) = ! Ek {—O‘—H z;16®) }) +p1lnn, (2.10)

[n]
t=1 @
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andforj=1,--- ,n—1,

NBSIC(j|D) = ~Z —2In Hfl z,|6%

‘—]+1
+ p2lnn, (2.11)

where 0, 9§t) and Gét) are drawn from the posterior distributions and 7" is ths
required iteration number.

If % and -Q%J‘]g% are equal to 1, then the equations (2.10) and (2.11) are
equal to the parlamzetric Bayesian Schwartz information criterion. These terms
give effect on NBSIC. Therefore, we can see that these terms play an important
role in Bayesian nonparametric setup using DPP.

First, let @ = a3 = a3. Then ﬁi—é——_—]ﬂ— in (2.11) is equal to W&_” and is

given in Figure 2.2.

ratio

002
I

001
J

FIGURE 2.1 ooy fora=5,n=10

Figure 2.1 shows that this term is much bigger as close to § and this behavior
is more marked if n is larger. As « goes to infinity, it converges to the parametric
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result. As seen above, the difference of the BSIC and nonparametric BSIC based
on DPP is whether these terms of the equation (2.11) and (2.12) exist or not.
Therefore, the effect term is very important to explain the discreteness of DPP
and leads misleading results against nonparametric Bayesian approach.

Next, let a # a; = a9. Then it is given in Figure 2.2 for various «;, given
a =5 and n = 20. In Figure 2.2, the horizontal line is —21In C?‘T:]— and the dotted

50
|

40
|

FIGURE 2.2 —2In &y and —2In —;r2hyy for @ =5, 01 = 2.18,3,5 and n = 20
@y o

line, straight line and dashed line dencte the values of —21n —mi?m with oy = 5,
oy

a1 = 3 and oy = 2.18, respectively.
For the case a=aj=as, the difference of —21n ﬁ:—] and —21n ;m%';r‘—ﬂ is

olnl
210 —y (2.12)
and ol” is always greater than allal»=7l. Therefore, NBSIC(0|D) is always
greater than ming NBSIC(k|D), for all k. Therefore, our criterion favors a model
which has a change. For example, as seen in Figure 2.2, the horizontal line is
—21n fr% and the dotted line is —21In #&_ﬁ and its minimum value is obtained
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at j = 5. In this case, it is seen that the equation (2.12) is always greater than
0 and this result gives effect on NBSIC(0|D). Therefore, it is seem to occur a
change and we conclude that NBSIC always selects a model with change and
leads a misleading result.

Next, we consider a # a; = az and o > «a;. For given «, we have different
results in multiple changepoint problem according to how we choose ay. In Figure
2.2, it is seen that —21In ﬁ"'_” is a convex function, given n and the minimum
is obtained at j = 5. If @y = 2.18, then this function is always greater than
—21In ﬁ% and if oy = 3, then this function is greater or smaller in some regions.

As mentioned above, the relation of the minimum value of —21n ——m—a?—7 and
aya °

[n—j
2

—21n EQIST is affect to identify a model selection whether there is a change or not.

3. An Illustrative Example

We consider an application to the simulation data set which is generated from
normal distribution. The aim is to identify whether there is a change or not and
to find whether there actually is a change in the simulated data set. That is, we
handle how many changepoints are occurred in given data sequence.

Now consider the simulated data which contains the three changepoints. The
simulated data set have forty observations which are generated from normal dis-
tributions with mean 2, 5, 8 and 11 respectively. For all above cases, its variance
is 1. The data set is described in Figure 3.1. Figure 3.1 is seem to have two or
three change positions(the exact number of changepoint is three).

To compare the parametric Bayesian and nonparametric Bayesian based on
DPP approaches, we apply our algorithm to the simulated data set. According to
the algorithm of the mentioned above, we find the parametric Bayesian estimate
of Schwartz information criterion(B/I\C) for given data sets. It is given in Table
3.1.

Table 3.1 gives the values of the parametric Bayesian estimate of Schwartz
information criterion. In Table 3.1, the values of parenthesis denote the position
of changepoint. For example, the 20th data in Stepl denotes that NBSIC (20|D)
=184.8484 is the smallest among its all corresponding values. Therefore the
change happens at the 20th data among all data. It is seen that this data set has
three changepoints and the changepositions are 10th, 20th and 30th data.

To calculate the NBST C, let the baseline functions of fy, f1 and fo have
normal probability density functions. And the prior distribution of @ has also
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FIGURE 3.1 The simulated data set

TABLE 3.1 Parametric Bayesian estimates of the Schwartz information criterion for the
stmulated date set

Step Data Set BTS'TC(O) minlstN_lB/STC(le)
Stepl all data 363.6413 184.8484
(20th data)
Step2 1st - 20th data 99.47418 75.41471
(10th data)
21st - 40th data  83.86497 67.52570
(30th data)
Step3  1st - 10th data 39.63537 47.62841
11th - 20th data  34.27936 39.45640
21st - 30th data  35.40147 37.32937
31st - 40th data  30.71867 32.87593
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normal distribution. We obtain the nonparametric Bayesian estimate of Schwartz
information criterion(NBSIC) for o1 = 2.401. It is given in Table 3.2.

TABLE 3.2 Nonparametric Bayesian estimates of the Schwartz information criterion for the
simulated data set for a =5 and a1 = az = 2.401

Step  Data Set NBSIC(0) miny<;<n-1NBSIC(j|D)
Stepl all data 497.1648 300.3642
(20th data)
Step2  1th - 20th data 138.31 113.4641
(10th data)
21h - 40th data 122.7008 105.5751
(30th data)
Step3 1th - 10th data 42.5563 44.4174
11th - 20th data  46.1169 50.4379
21th - 30th data  47.2389 48.4658
31th - 40th data  42.5563 44.4174

It is seen that same conclusion is obtained via the parametric Bayesian anal-
ysis in Table 3.1. a; = 2.401 is obtained by solving —2In ——[%r]—a%n_—%] is approxi-
a” oy

mately equal to —21n ;“[—Z]

In conclusion, if @ = a; = ag, then NBSIC(0|D) is always greater than
min;NBSIC(j|D) for all j. Our criterion favors a model with a change. Also, o
is much smaller than & and both are small(for example, o = 1), then min; NBSIC
(§1D) is greater than NBSIC(0[D). It takes a model with no change. And both
cases give misleading results. But, for a proper value of a’s as mentioned in
Section 2.2, we could have a similar result as like a parametric Bayesian analysis.
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