• Title/Summary/Keyword: nonlocal term

Search Result 17, Processing Time 0.022 seconds

Existence and Uniqueness of Solutions for the Semilinear Fuzzy Integrodifferential Equations with Nonlocal Conditions and Forcing Term with Memory

  • Kwun, Young-Chel;Park, Jong-Seo;Kim, Seon-Yu;Park, Jin-Han
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.288-292
    • /
    • 2006
  • Many authors have studied several concepts of fuzzy systems. Balasubramaniam and Muralisankar (2004) proved the existence and uniqueness of fuzzy solutions for the semilinear fuzzy integrodifferential equation with nonlocal initial condition. Recently, Park, Park and Kwun (2006) find the sufficient condition of nonlocal controllability for the semilinear fuzzy integrodifferential equation with nonlocal initial condition. In this paper, we study the existence and uniqueness of solutions for the semilinear fuzzy integrodifferential equations with nonlocal condition and forcing term with memory in $E_{N}$ by using the concept of fuzzy number whose values are normal, convex, upper semicontinuous and compactly supported interval in $E_{N}$.

Controllability for the Semilinear Fuzzy Integrodifferential Equations with Nonlocal Conditions and Forcing Term with Memory

  • Yoon, Joung-Hahn;Kwun, Young-Chel;Park, Jong-Seo;Park, Jin-Han
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.1
    • /
    • pp.34-40
    • /
    • 2007
  • Balasubramaniam and Muralisankar (2004) proved the existence and uniqueness of fuzzy solutions for the semilinear fuzzy integrodifferential equations with nonlocal initial condition. Park et al. (2006) found the sufficient condition of this system. Recently, Kwun et al. (2006) proved the existence and uniqueness of solutions for the semilinear fuzzy integrodifferential equations with nonlocal initial conditions and forcing term with memory in $E_N$. In this paper, we study the controllability for this system by using the concept of fuzzy number whose values are normal, convex, upper semicontinuous and compactly supported interval in $E_N$.

SEMILINEAR NONLOCAL DIFFERENTIAL EQUATIONS WITH DELAY TERMS

  • Jeong, Jin-Mun;Cheon, Su Jin
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.3
    • /
    • pp.627-639
    • /
    • 2013
  • The goal of this paper is to obtain the regularity and the existence of solutions of a retarded semilinear differential equation with nonlocal condition by applying Schauder's fixed point theorem. We construct the fundamental solution, establish the H$\ddot{o}$lder continuity results concerning the fundamental solution of its corresponding retarded linear equation, and prove the uniqueness of solutions of the given equation.

Controllability for the Semilinear Fuzzy Integrodifferential Equations with Nonlocal Conditions and Forcing Term with Memory (기억을 갖는 강제항과 비국소조건을 갖는 준선형 퍼지 적분미분방정식에 대한 제어가능성)

  • Kwun, Young-Chel;Ahn, Young-Chel;Park, Dong-Gun;Kim, Seon-Yu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.213-216
    • /
    • 2007
  • In this paper. we study the controllability for the semilinear fuzzy integrodifferential equations with nonlocal condition and forcing term with memory in $E_N$ by using the concept of fuzzy number whose values are normal, convex, upper semicontinuous and compactly supported interval in $E_N$.

  • PDF

Existence of Solutions for the Impulsive Semilinear Fuzzy Intergrodifferential Equations with Nonlocal Conditions and Forcing Term with Memory in n-dimensional Fuzzy Vector Space(ENn, dε)

  • Kwun, Young-Chel;Kim, Jeong-Soon;Hwang, Jin-Soo;Park, Jin-Han
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.25-32
    • /
    • 2011
  • In this paper, we study the existence and uniqueness of solutions for the impulsive semilinear fuzzy integrodifferential equations with nonlocal conditions and forcing term with memory in n-dimensional fuzzy vector space ($E^n_N$, $d_{\varepsilon}$) by using Banach fixed point theorem. That is an extension of the result of Kwun et al. [9] to impulsive system.

Non-linear transverse vibrations of tensioned nanobeams using nonlocal beam theory

  • Bagdatli, Suleyman M.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.281-298
    • /
    • 2015
  • In this study, nonlinear transverse vibrations of tensioned Euler-Bernoulli nanobeams are studied. The nonlinear equations of motion including stretching of the neutral axis and axial tension are derived using nonlocal beam theory. Forcing and damping effects are included in the equations. Equation of motion is made dimensionless via dimensionless parameters. A perturbation technique, the multiple scale methods is employed for solving the nonlinear problem. Approximate solutions are applied for the equations of motion. Natural frequencies of the nanobeams for the linear problem are found from the first equation of the perturbation series. From nonlinear term of the perturbation series appear as corrections to the linear problem. The effects of the various axial tension parameters and different nonlocal parameters as well as effects of different boundary conditions on the vibrations are determined. Nonlinear frequencies are estimated; amplitude-phase modulation figures are presented for simple-simple and clamped-clamped cases.

LONG-TIME BEHAVIOR OF SOLUTIONS TO A NONLOCAL QUASILINEAR PARABOLIC EQUATION

  • Thuy, Le Thi;Tinh, Le Tran
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1365-1388
    • /
    • 2019
  • In this paper we consider a class of nonlinear nonlocal parabolic equations involving p-Laplacian operator where the nonlocal quantity is present in the diffusion coefficient which depends on $L^p$-norm of the gradient and the nonlinear term is of polynomial type. We first prove the existence and uniqueness of weak solutions by combining the compactness method and the monotonicity method. Then we study the existence of global attractors in various spaces for the continuous semigroup generated by the problem. Finally, we investigate the existence and exponential stability of weak stationary solutions to the problem.

Frequency analysis of deep curved nonlocal FG nanobeam via DTM

  • S. A. H. Hosseini;O. Rahmani
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.603-614
    • /
    • 2023
  • In this paper, frequency analysis of curved functionally graded (FG) nanobeam by consideration of deepness effect has been studied. Differential transform method (DTM) has been used to obtain frequency responses. The nonlocal theory of Eringen has been applied to consider nanoscales. Material properties are supposed to vary in radial direction according to power-law distribution. Differential equations and related boundary conditions have been derived using Hamilton's principle. Finally, by consideration of nonlocal theory, the governing equations have been derived. Natural frequencies have been obtained using semi analytical method (DTM) for different boundary conditions. In order to study the effect of deepness, the deepness term is considered in strain field. The effects of the gradient index, radius of curvature, the aspect ratio, the nonlocal parameter and interaction of aforementioned parameters on frequency value for different boundary conditions such as clamped-clamped (C-C), clamped-hinged (C-H), and clamped-free (C-F) have been investigated. In addition, the obtained results are compared with the results in previous literature in order to validate present study, a good agreement was observed in the present results.

WEAK SOLUTIONS AND ENERGY ESTIMATES FOR A DEGENERATE NONLOCAL PROBLEM INVOLVING SUB-LINEAR NONLINEARITIES

  • Chu, Jifeng;Heidarkhani, Shapour;Kou, Kit Ian;Salari, Amjad
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1573-1594
    • /
    • 2017
  • This paper deals with the existence and energy estimates of solutions for a class of degenerate nonlocal problems involving sub-linear nonlinearities, while the nonlinear part of the problem admits some hypotheses on the behavior at origin or perturbation property. In particular, for a precise localization of the parameter, the existence of a non-zero solution is established requiring the sublinearity of nonlinear part at origin and infinity. We also consider the existence of solutions for our problem under algebraic conditions with the classical Ambrosetti-Rabinowitz. In what follows, by combining two algebraic conditions on the nonlinear term which guarantees the existence of two solutions as well as applying the mountain pass theorem given by Pucci and Serrin, we establish the existence of the third solution for our problem. Moreover, concrete examples of applications are provided.

QUALITATIVE ANALYSIS OF A PROPORTIONAL CAPUTO FRACTIONAL PANTOGRAPH DIFFERENTIAL EQUATION WITH MIXED NONLOCAL CONDITIONS

  • Khaminsou, Bounmy;Thaiprayoon, Chatthai;Sudsutad, Weerawat;Jose, Sayooj Aby
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.197-223
    • /
    • 2021
  • In this paper, we investigate existence, uniqueness and four different types of Ulam's stability, that is, Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability of the solution for a class of nonlinear fractional Pantograph differential equation in term of a proportional Caputo fractional derivative with mixed nonlocal conditions. We construct sufficient conditions for the existence and uniqueness of solutions by utilizing well-known classical fixed point theorems such as Banach contraction principle, Leray-Schauder nonlinear alternative and $Krasnosel^{\prime}ski{\breve{i}}{^{\prime}}s$ fixed point theorem. Finally, two examples are also given to point out the applicability of our main results.