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Abstract

In this paper. we study the controllability for the semilinear fuzzy integrodifferential equations with
nonlocal condition and forcing term with memory in £y by using the concept of fuzzy number whose

values are normal, convex, upper semicontinuous and compactly supported interval in Ey.
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1. Introduction

Many authors have studied several concepts of
fuzzy systems. Kaleva [3] studied the existence
and uniqueness of solution for the fuzzy differential
equation on Ey where Ey is normal, convex,
upper semicontinuous and compactly supported
fuzzy sets in Ry Seikkala [8] proved the existence
and uniqueness of fuzzy solution for the following

equation:

z(t) = f(t,z(t)), =(0)=x,,
where f is a continuous mapping from RT %< R
into R and z, is a fuzzy number in £'. Diamond

and Kloeden [2] proved the existence of fuzzy
optimal control for the nonlinear fuzzy differential
system with nonlocal initial condition in E) using
by Kuhn-Tucker theorems. Balasubramaniam and
Muralisankar [1] proved the

uniqueness of fuzzy solutions for the semilinear

existence and

fuzzy integrodifferential equation with nonlocal
initial condition. Recently, Kwun etal. [5] proved

the existence and uniqueness of solutions for the

following  semilinear  fuzzy  integrodifferential

equations with nonlocal initial conditions and
forcing term with memory{u(t) =0):

%(ttle[z(t)+f0‘c(t—s)x(s)ds] R

+£(t, , f :k(t, s, z(s))ds) +u(t), te =0, T},

z(0)+g(z) =2z, € Ey , 2
where A: I — E, is a fuzzy coefficient, Ey is the
set of all upper semicontinuous convex normal
fuzzy numbers with bounded ¢« -level
f1IX EyX Ey— Ey k: IX IX Ey—FEy

intervals,
and

are nonlinear continuous functions, G(t) is n X n

dG(t)z
dt

te{ with

is continuous

G| <k,

k>0,u: I—Ey is control function and g: E,

continuous matrix such that

for z€E, and

— E\ is a nonlinear continuous function.
In this paper, we study the controllability for the
above semilinear fuzzy integrodifferential equations

with nonlocal condition and forcing term with

memory (1)~(2) in F\ .
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2. Preliminaries

We denote the suprimum metric d, on £y and
the suprimum metric A, on C(/ : E").
Definition 2.1. Let a, b & £,
d (a, b) = sup {d,{la)", b)) : @ (0, 1] }
where d, is the Hausdorff distance.
Definition 2.2. Let =,y € C(I : E").
H(z,y)=sup{d.(z(t),y(t)): t e I}.
Let 7 be a real interval. A mapping z:7/ — Ey is
called a fuzzy process. We denote
[z = [z7(¢), 27 (2)
The derivative z'(t) of a fuzzy process z is
defined by

("= () (), (=

,te,0<a< 1.

) ()], 0<a<i

provided that 1is equation defines a fuzzy
I’ (t) (S E\' .
The fuzzy integral
b
/z(t)dt, a,be’]

a

is defined by

dt]“: [f:z;‘(t)dt, fabm‘,‘(t)dt]

provided that the Lebesgue integrals on the right
exist.

Definition 2.3. [1] The fuzzy process z: 7 — E,,
(1)-(2) without the

inhomogeneous term if and only if

(£)(t) = min VROIHO)
+ /'(,’(f-“s):ltfl-'(s)ds}‘ Lwi=lLr },

() = max {A2(Ok2(1)

is a solution of equations

!
+ f (v’(f.“S)I;«'(S)dS], i, j =1, r},
]

and

(e NO) = oy — g7 (),

(" 0) =, — g ).

Now we assume the following:

(H1) The nonlinear function f:[0. 71 - £, < F\|

» 1 satisfies a global Lipschitz condition. there

exists a finite constants k;, k, >0 such that
dy([f(s, & (), m (DI, [£(s, & (), my(s)])

< k(6 ()7, [{2(5)]")+kd,, [ ()1, [np(s)]™)

for all £ (s), &(s), m(s), my(s) EEy .

(H2) The nonlinear function k: [0, T"]x
XEy— By

(0, T]
satisfies a global Lipschitz condition,
there exists a finite constant M>0 such that
dylk(t, 5,9, ($)]°, [k(2, 5,9, (s)]%)
< Mdy(l, ()17, [ (s)])

for all ,(s), ¥,(s) € Ey .

(H3) The nonlinear function g: Ey— E\ satisfies
following inequality

dy(lg(€), lg(e1™) < Ldy(le, ()1, I, (<)),
where constant L > 0.

H4) S@)
yEEy, and s ()y € C'(I: Ey)NC(I: Ey),

is a fuzzy number satisfying, for
the

equation

%S(t)y = A[ S(t)y+ f(:G(t—s)S(s)yds

=S(t)Ay+ ftS(t—s)AG(s)yds, ter,
0

such that
[S()]*= [57(¢)
and St) (i=

S(t)],

l,7) is continuous. That is, there

exists a constant ¢>0 such that 1S*t)| < ¢ for all
terl .

(H5) o(L+kT+k,MT?) <1,
3. Nonlocal controllability
In this section, we consider the controllability for

the equations (1)-(2).
The equations (1)-(2) is related to the following

f5t~s) @)
/:)k S, T, T

fuzzy integral equation:

x(t) =Sz, —

fSt—c (s, 2

where S(1) is satisfy (H4).

dr))ds,
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Theorem 3.1. [5]. Let 7>0, assume that the origin to z'—g(z) in time 7 provided we can

function f,k and g satisfy hypotheses (H1)~(H5). obtain a fixed point of the nonlinear operator ®.
Then, for every z, € Ey , equation (3)(u(t)=0)

has a unique fuzzy solution z € C([0,7]: Ey). Assume that the following hypotheses:

Definition 3.2. The equation (3) is nonlocal (H6) Linear system of equation (3) (f=0) is

controllable if, there exists u(t) such that the nonlocal controllable.

fuzzy solution z(t) of (3) satisfies =(7) =z'—g(z) H? cL(1+(1+e) )+ (k +kMT) T (1+cT) < 1.

Ge, (7)) =[z' - g(2)]") where z! is target set. Theorem 3.3. Suppose that hypotheses (H1)-(H7)

are satisfied. Then the equation (3) is nonlocal

. . ~ controllable.
Defined the fuzzy mapping G: P(R) — Ey by
(v) = {f S (T—s)v(s)ds, vc I, ) 4. Example
otherwise.
Then there exists G* (i=1I,r) such that Consider the semilinear one dimensional heat

equation on a connected domain (0,1) for a

T
& W)= [ ST=s)u(s)ds,u(s) =R (o)l (o)

material with memory, boundary condition

T z(t,0)=z(t,1) =0 and with initial condition
[ 5T 5)v,(s)ds,v, () € ! (), (5))
z(0,2) =z,(z2), i]ckz(tkw):g(z), where x,(z)
We assume that G, G are bijective mappings. k=1

Hence a—level of u(s) are EEy. Let z(t, z) be the internal energy and

()1 =l (s), w7 ()] Fzlt), [kt 5wl 2)ds) =3t 27+ [ (e

= [(Gia)_l (' 0 =i (@) =57 (D)= g7 (2))), s)z(s)ds be the external heat with memory.

(G ()2 — g2 (@) = $°(T) (s — g () ] e
o Let A=2—g; and Glt—s)=e "9, then the
Thus we can be introduced u(s) of nonlinear 0z

system balance equation becomes

[u(s))*=[uf (s), u?(s)]
= [ (x )1 —gr(z)~-5(T) 2 m(t)“foe'(t—s)x(s)ds] 5)

(Y - t
x (z5—gi'(z)) — f S§(T—s) +2tx(t)2+f(t—s):c(s)ds+u(t),tel,
0
X fi(s,a( f ks, 7, z(r))dr)ds)), z(O)Zz(,—ﬁc‘.z(t‘.,z)- (6)
=1
()7 ((e")2 — g7 (2) —8°(7)
. N 5 o _
x (2 — g f ST 5) Since a-level set of fuzzy number 2 is [2]
0 la+1,3—a] for all a<[0,1], a-level set of
xﬂf(s,x(-s),/;k(s,ﬂx(T))dT)dS)]- f(t,at(t),frk(t, s, z(s))ds) is
[}
Notice that @ (T) =z'—g(x), which means that /‘ k. s I
s.a(s))ds

the control «(/) steers the equation (3) from the
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— [tla+1) (=0 ()2 + f )'(t—snr(t),

t(s—a)(x;r(t))uf‘(t—s)z;r(t)].
Further, we have

st o), [kt 5 z(s)ds)l,

£ ye), [k s ys)ds)

+ [0

t(3—a)(zf(t))2+[:(t—s)z )]

+/ t—s y,
+f0 t—s)yp (e

2 ()= (y7 (1)1,
B=a)l(@} ()= (37 ()1}

+ [ =)y llar (o), 25 (), b (o)

= d,,([t(a+1)(ac,"(t))2

[tle+1)(

t(3—a)(

=t max {(a+1)I(

40 (8)])
<37 1z0(8) +y7 (8)]

xmax {lzy (t)—yf @), 1z () —y7 ()1}
yr Oz @) — v @I}

=k dyllz (D, [y(O)) +kydy (2 @), [y(2)]),

2

r o
+—-max{lzf (¢) -

where Ak, and Kk, are satisfies the inequality in

hypotheses (H1)-(H2), and also we have

d(lg()]", (g

"(’u 2 G[ (fL

lt (* llll ax {H

= Ly, (e Tyle)]),

(™)
2 G. [J tk

el Ly

where [ satisfies the inequality in hyvpothesis

(H3).
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