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SEMILINEAR NONLOCAL DIFFERENTIAL EQUATIONS

WITH DELAY TERMS

Jin-Mun Jeong and Su Jin Cheon

Abstract. The goal of this paper is to obtain the regularity and the
existence of solutions of a retarded semilinear differential equation with
nonlocal condition by applying Schauder’s fixed point theorem. We con-
struct the fundamental solution, establish the Hölder continuity results
concerning the fundamental solution of its corresponding retarded linear
equation, and prove the uniqueness of solutions of the given equation.

1. Introduction

In this paper, we deal with the nonlocal initial value problem governed by
retarded semilinear parabolic type equations in a Hilbert space as follows.











d
dtx(t) = A0x(t) +

∫ 0

−h a(s)A1x(t+ s)ds

+f(t, x(t), x(b1(t)), . . . , x(bm(t))) + k(t), t ≥ 0,

x(0) = g0 − φ(x), x(s) = g1(s)− esφ(x), −h ≤ s < 0,

(NRE)

Let H and V be complex Hilbert spaces such that the embedding V ⊂ H
is continuous. Let A0 be the operator associated with a bounded sesquilinear
form defined in V × V satisfying G̊arding inequality. Then A0 generates an
analytic semigroup S(t) in both H and V ∗ and so the equation (NRE) may
be considered as an equation in both H and V ∗. The operator A1 is bounded
linear from V to V ∗ such that its restriction to D(A0) is a bounded linear
operator from D(A0) to H . The function a(·) is assumed to be real-valued and
Hölder continuous in the interval [−h, 0], and f , φ, bi(i = 1, . . . ,m) are given
functions satisfying some assumptions.
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In view of the maximal regularity result by Di Blasio, Kunisch and Sinestrari
[1], the retarded functional differential equation of parabolic type

{

d
dtx(t) = A0x(t) +

∫ 0

−h
a(s)A1x(t+ s)ds+ k(t),

x(0) = g0, x(s) = g1(s), −h ≤ s < 0
(RE)

has a unique solution x in the class L2(0, T ;D(A0))∩W 1,2(0, T ;H) (or see [2, 3]
for the case of class L2(0, T ;V )∩W 1,2(0, T ;V ∗)). There are many papers on the
existence of solutions of nonlocal abstract initial value problems without delay
(see the bibliographies in [4, 5]). Results on the existence of mild and classical
solutions of nonlocal Cauchy problem for a semilinear functional differential
evolution equation was obtained by Byszewski and Akca [5].

In recent years, Obukhovski and Zecca [6] discussed the controllability for
the system governed by semilinear differential inclusions in a Banach space
with noncompact semigroup and Xue [7, 8] studied semilinear nonlocal prob-
lems without the assumption of compactness in Banach spaces. Zhu et el.
[9] concerned the impulsive differential equations with nonlocal conditions in
general Banach spaces.

In this paper, we extend these results to the equation (NRE) with unbounded
principal operators and delay term. Let W (·) be the fundamental solution of
the linear equation associated with (RE), which is defined to be the operator
valued function satisfying

d

dt
W (t) = A0W (t) +

∫ 0

−h

a(s)A1W (t+ s)ds,

W (0) = I, W (s) = 0, s ∈ [−h, 0).

The fundamental solution enables us to solve the equation (NRE). For the
basis of our arguments, we construct the fundamental solution in the sense of
Nakagiri [10] to (RE), establish the Hölder continuity results concerning the
fundamental solution W (t) of the equation (RE) and obtain the regularity and
the existence of solutions of (NRE) by applying Schauder’s fixed point theorem.
According to Tanabe [11, Theorem 1], we will also prove the uniqueness of
solutions of the equation (NRE).

2. Semilinear equation and its fundamental solution

The inner product and the norm in H are denoted by (·, ·) and | · |, re-
spectively. V is another Hilbert space densely and continuously embedded in
H . The notations || · || and || · ||∗ denote the norms of V and of V ∗ as usual,
respectively. For brevity, we may regard that

(2.1) ||u||∗ ≤ |u| ≤ ||u||, u ∈ V.

Let B(·, ·) be a bounded sesquilinear form defined in V × V and satisfying
G̊arding’s inequality

(2.2) Re B(u, u) ≥ c0||u||2 − c1|u|2, c0 > 0, c1 ≥ 0.
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Let A0 be the operator associated with the sesquilinear form −B(·, ·):
(A0u, v) = −B(u, v), u, v ∈ V.

It follows from (2.2) that for every u ∈ V ,

Re ((c1 −A0)u, u) ≥ c0||u||2.
Then A0 is a bounded linear operator from V to V ∗, and its realization in H
which is the restriction of A0 to

D(A0) = {u ∈ V ;A0u ∈ H}
is also denoted by A0. Then A0 generates an analytic semigroup S(t) = etA0

in both H and V ∗ as in Theorem 3.6.1 of [12]. Hence we may assume that
0 ∈ ρ(A0) according to the Lax-Milgram theorem, where ρ(A0) denotes the
resolvent set of A0. Moreover, there exists a constant C0 such that

(2.3) ||u|| ≤ C0||u||1/2D(A0)
|u|1/2,

for every u ∈ D(A0), where

||u||D(A0) = (|A0u|2 + |u|2)1/2

is the graph norm of D(A0).
For the sake of simplicity, we assume that S(t) is uniformly bounded. Then

(2.4) |S(t)| ≤ M0, |A0S(t)| ≤ M0/t, |A2
0S(t)| ≤ M0/t

2, t > 0

for some constant M0(e.g., [8]). We also assume that a(·) is Hölder continuous
of order ρ:

(2.5) |a(·)| ≤ H0, |a(s)− a(τ)| ≤ H1(s− τ)ρ

for some constants H0, H1.

Lemma 2.1. For 0 < s < t and 0 < α < 1,

|S(t)− S(s)| ≤ M0

α
(
t− s

s
)α,(2.6)

|A0S(t)−A0S(s)| ≤ M0(t− s)αs−α−1.(2.7)

Proof. From (2.4), for 0 < s < t,

(2.8) |S(t)− S(s)| = |
∫ t

s

A0S(τ)dτ | ≤ M0 log
t

s
.

It is easily seen that for any t > 0 and 0 < α < 1,

log(1 + t) =

∫ 1+t

1

1

s
ds ≤

∫ 1+t

1

1

s1−α
ds(2.9)

=
1

α
{(1 + t)α − 1} ≤ tα/α.
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Combining (2.9) with (2.8), we get (2.6). For 0 < s < t,

(2.10) |A0S(t)− A0S(s)| = |
∫ t

s

A2
0S(τ)dτ | ≤ M0(t− s)/ts.

Noting that (t − s)/t ≤ ((t − s)/s)α for 0 < α < 1, we obtain (2.7) from
(2.10). �

First, we introduce the following linear retarded functional differential equa-
tion:

d

dt
x(t) = A0x(t) +

∫ 0

−h

a(s)A1x(t+ s)ds+ k(t).

Let W (·) be the fundamental solution of the above linear equation in the
sense of Nakagiri [10], which is the operator valued function satisfying

{

d
dtW (t) = A0W (t) +

∫ 0

−h
a(s)A1W (t+ s)ds,

W (0) = I, W (s) = 0 s ∈ [−h, 0).

According to Duhamel’s principle, the problem mentioned above is transformed
to the following integral equation:

{

W (t) = S(t) +
∫ t

0 S(t− s)
∫ 0

−h a(τ)A1W (s+ τ)dτds, t > 0,

W (0) = I, W (s) = 0 − h ≤ s < 0,
(2.11)

where S(·) is the semigroup generated by A0. Then










x(t) = W (t)(g0 − φ(x)) +
∫ 0

−h Ut(s)(g
1(s)− esφ(x))ds

+
∫ t

0 W (t− s){f(s, x(s), x(b1(s)), . . . , x(bm(s))) + k(s)}ds,
Ut(s) =

∫ s

−h
W (t− s+ σ)a(σ)A1dσ.

(2.12)

Recalling the formulation of mild solutions, we know that the mild solution of
(RE) is also represented by

x(t) =











S(t)(g0 − φ(x)) +
∫ t

0 S(t− s){
∫ 0

−h a(τ)A1x(s+ τ)dτ

+f(s, x(s), x(b1(s)), . . . , x(bm(s))) + k(s)}ds, 0 ≤ t

g1(s)− esφ(x), −h ≤ s < 0.

According to H. Tanabe [11], we set

(2.13) V (t) =

{

A0(W (t)− S(t)), t ∈ (0, h]

A0W (t), t ∈ (nh, (n+ 1)h], n = 1, 2, . . . .

For 0 < t ≤ h,

W (t) = S(t) +A−1
0 V (t)

and from (2.11), we have

W (t) = S(t) +

∫ t

0

∫ t

τ

S(t− s)a(τ − s)dsA1W (τ)dτ.
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Hence

V (t) = V0(t) +

∫ t

0

A0

∫ t

τ

S(t− s)a(τ − s)dsA1A
−1
0 V (τ)dτ,

where

V0(t) =

∫ t

0

A0

∫ t

τ

S(t− s)a(τ − s)dsA1S(τ)dτ.

For nh ≤ t ≤ (n + 1)h (n = 1, 2, . . .), the fundamental solution W (t) is repre-
sented by

W (t) = S(t) +

∫ t−h

0

∫ τ+h

τ

S(t− s)a(τ − s)dsA1W (τ)dτ

+

∫ nh

t−h

∫ t

τ

S(t− s)a(τ − s)dsA1W (τ)dτ

+

∫ t

nh

∫ t

τ

S(t− s)a(τ − s)dsA1W (τ)dτ.

The integral equation to be satisfied by (2.13) is

V (t) = V0(t) +

∫ t

nh

A0

∫ t

τ

S(t− s)a(τ − s)dsA1A
−1
0 V (τ)dτ,

where

V0(t) = A0S(t) +

∫ t−h

0

A0

∫ τ+h

τ

S(t− s)a(τ − s)dsA1W (τ)dτ

+

∫ nh

t−h

A0

∫ t

0

S(t− s)a(τ − s)dsA1W (τ)dτ.

Thus the integral equation (2.13) can be solved by successive approximations
and V (t) is uniformly bounded in [nh, (n+ 1)h]:

sup
nh≤t≤(n+1)h

|V (t)| < ∞, n = 0, 1, 2, . . . .

It is not difficult to show that for n > 1,

V0(nh+0) 6= V0(nh−0), W (nh+0) = W (nh−0) and V (nh+0) = V (nh−0).

Lemma 2.2. There exists a constant C′
n > 0 such that

(2.14) |
∫ t

nh

a(τ − s)A1W (τ)dτ | ≤ C′
n

for n = 0, 1, 2, . . ., t ∈ [nh, (n+ 1)h] and t ≤ s ≤ t+ h.

Proof. For t ∈ (0, h] (i.e., n = 0), from (2.13) it follows
∫ t

0

a(τ − s)A1W (τ)dτ =

∫ t

0

a(τ − s)A1A
−1
0 (A0S(τ) + V (τ))dτ

=

∫ t

0

(a(τ − s)− a(s))A1A
−1
0 A0S(τ)dτ + a(s)A1A

−1
0 (S(t)− I)
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+

∫ t

0

a(τ − s)A1A
−1
0 V (τ)dτ.

Noting that

|
∫ t

0

(a(τ − s)− a(s))A1A
−1
0 A0S(τ)dτ | ≤ M0H1|A1A

−1
0 |

∫ t

0

τρ−1dτ,

we have

|
∫ t

0

a(τ − s)A1W (τ)dτ | ≤ |A1A
−1
0 |{ρ−1hρM0H1 +H0(M0 + 1)

+ hH0( sup
0≤t≤h

|V (t)|)}.

Thus the assertion (2.14) holds in [0, h]. For t ∈ [nh, (n+ 1)h], n ≥ 1,
∫ t

nh

a(τ − s)A1W (τ)dτ =

∫ t

nh

a(τ − s)A1A
−1
0 V (τ)dτ.

The right-hand side of the above equality is estimated as

|
∫ t

nh

a(τ − s)A1A
−1
0 V (τ)dτ | ≤ hH0|A1A

−1
0 |( sup

nh≤t≤(n+1)h

|V (t)|).

Hence we get the assertion (2.14). �

Proposition 2.3. The fundamental solution W (t) of (RE) exists uniquely.
For 0 < t < t′ ≤ nh, n > 1, there exists a constant Cn > 0 such that

(2.15) |W (t′)−W (t)| ≤ Cn(t
′ − t)α, 0 < α < 1.

Proof. The existence and uniqueness of the fundamental solution W (t) of (RE)
is due to Tanabe [11]. With the aid of suitable changes in variables, from (2.11)
we obtain

W (t) =

{

S(t) +
∫ t

0 S(t− s)
∫ s

0 a(τ − s)A1W (τ)dτds, 0 < t ≤ h,

S(t) +
∫ t

0
S(t− s)

∫ s

s−h
a(τ − s)A1W (τ)dτds, h < t.

For 0 < t ≤ h, since

|W (t′)−W (t)| ≤ |S(t′)− S(t)|

+ |
∫ t

0

(S(t′ − s)− S(t− s))

∫ s

0

a(τ − s)A1W (τ)dτds|

+ |
∫ t′

t

S(t′ − s)

∫ s

0

a(τ − s)A1W (τ)dτds|,

from Lemmas 2.1 and 2.2, it follows that

|W (t′)−W (t)| ≤ const.(
t′ − t

t
)α ≤ Cn(t

′ − t)α, 0 < α < 1.

For h < t, we get (2.15) analogously. �
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Considering as an equation in V ∗, we also obtain the same norm estimates
of (2.4)-(2.7), (2.15) in the space V ∗. By virtue of Theorem 3.3 of [2], [4] we
have the following regularity results on the retarded linear equation (RE).

Proposition 2.4. 1) Let F := (D(A0), H) 1

2
,2, where (D(A0), H)1/2,2 denotes

the real interpolation space between D(A0) and H. For (g0, g1) ∈ F ×L2(−h, 0;
D(A0)) and k ∈ L2(0, T ;H), T > 0, there exists a unique solution x of (RE)
belonging to

L2(−h, T ;D(A0)) ∩W 1,2(0, T ;H) ⊂ C([0, T ];F )

and satisfying

(2.16)
||x||L2(−h,T ;D(A0))∩W 1,2(0,T ;H)

≤ CT (||g0||F + ||g1||L2(−h,0;D(A0)) + ||k||L2(0,T ;H)),

where CT is a constant depending on T .
2) Let (g0, g1) ∈ H ×L2(−h, 0;V ) and k ∈ L2(0, T ;V ∗), T > 0. Then there

exists a unique solution x of (RE) belonging to

L2(−h, T ;V ) ∩W 1,2(0, T ;V ∗) ⊂ C([0, T ];H)

and satisfying

(2.17) ||x||L2(−h,T ;V )∩W 1,2(0,T ;V ∗) ≤ CT (|g0|+||g1||L2(−h,0;V )+||k||L2(0,T ;V ∗)).

3. Existence and uniqueness of solutions

In this section, we investigate the regularity for solutions of the equation
(NRE) with the operator A0 associated with the sesquilinear form −B(·, ·)
satisfying G̊arding’s inequality

Re B(u, u) ≥ c0||u||2, c0 > 0.

Hence we have 0 ∈ ρ(A0). In what follows, we assume that the embedding
D(A0) →֒ V is compact. Then A−1

0 : H → D(A0) →֒ V →֒ H is compact. This
is equivalent to saying that the semigroup S(t) is completely continuous [13,
Corollary 3.4], and hence W (t) defined as in (2.11) is completely continuous
(for more information on the fundamental solution, see [14, Proposition 3.1] or
[15, Lemma 2.4]). For brevity, we assume that

(3.1) ||W (t)|| ≤ M1, t > 0.

Let T > 0 be fixed and X = C([0, T ];H). Put

Hr = {z ∈ H : |z| ≤ r} and Xr = {x ∈ X : ||x||X ≤ r}
for some r > 0.

Let k ∈ L2(0, T ;H) and let f : [0, T ]×Hm+1 → H , φ : X → H , bi : [0, T ] →
[0, T ] (i = 1, . . . ,m) satisfying the following assumptions:
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Assumption (A). (i) f ∈ C([0, T ] × Hm+1;H), φ ∈ C(X ;H) and bi ∈
C([0, T ];R+) (i = 1, . . . ,m). Moreover, there are Li > 0(i = 1, 2) such that

|f(s, z0, z1, . . . , zm)| ≤ L1 for s ∈ [0, T ], zi ∈ Hr(i = 1, . . . ,m).

(ii) φ is completely continuous such that

|φ(x)| ≤ L2 for x ∈ Xr.

Lemma 3.1. Let h ∈ L2(0, T ;H). Then for any t > 0, the operators Pt and
Qt from L2(0, T ;H) into H defined by

Pth =

∫ t

0

S(t− s)h(s)ds and Qth =

∫ t

0

W (t− s)h(s)ds

are completely continuous.

Proof. We define the ǫ-approximation P ǫ
t : L2(0, T ;H) → H of Pt for ǫ ∈ (0, t]

by

P ǫ
t h = S(ǫ)

∫ t−ǫ

0

S(t− ǫ− s)h(s)ds.

Since S(t) is completely continuous, so is P ǫ
t . The complete continuity of Pt

follows from

|(P ǫ
t − Pt)h| ≤

√
ǫM ||h||L2(0,T ;H).

The ǫ-approximation Qǫ
t : L

2(0, T ;H) → H of Qt is defined by

Qǫ
th =

∫ t−ǫ

0

W (t− s)h(s)ds.

Noting that

W (t+t′) = S(t′)W (t)+

∫ t′

0

S(t′−σ)

∫ 0

−h

a(τ)A1x(σ+t+τ)dτdσ, 0 < t, t′ ≤ T,

we have

Qǫ
th = S(ǫ)

∫ t−ǫ

0

W (t− ǫ− s)h(s)ds

+

∫ t−ǫ

0

∫ ǫ

0

S(ǫ − σ)

∫ −h′

0

a(τ)A1x(σ + t− ǫ− s+ τ)dτdσds.

By using a similar procedure to the case of Pt, we obtain that Qt is completely
continuous from the complete continuity of W (t) and Qǫ

t . �

Theorem 3.2. Let (g0, g1) ∈ H × L2(−h, 0;D(A0)) and k ∈ L2(0, T ;H).
Assume that f , φ and bi (i = 1, . . . ,m) satisfy Asuumption (A). Then there
exists a mild solution x of (NRE) belonging to C([0, T ];H). Furthermore, if
g0 − φ(x) ∈ F = (D(A0), H) 1

2
,2, then the solution x of (NRE) belongs to

L2(−h, T ;D(A0)) ∩W 1,2(0, T ;H) ⊂ C([0, T ];F )
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and satisfies

||x||L2(−h,T ;D(A0))∩W 1,2(0,T ;H)

≤ C′
T (1 + ||g0||(D(A0),H) 1

2
,2

+ ||g1||L2(−h,0;D(A0)) + ||k||L2(0,T ;H)),

where C′
T is a constant depending on T .

Proof. Let

r = M1(|g0|+ L2) + hM1H0‖A1A
−1
0 ‖(L2h+

√
h‖g1‖L2(−h,0:D(A0)))(3.2)

+M1L1T +M1

√
T ||k||L2(0,T ;H).

Define a mapping F on Xr by the fomular

(Fx)(t) = W (t)(g0 − φ(x)) +

∫ 0

−h

Ut(s)(g
1(s)− esφ(x))ds

+

∫ t

0

W (t− s){f(s, x(s), x(b1(s)), . . . , x(bm(s))) + k(s)}ds.

In view of (3.1) and Assumption (A),

|(Fx)(t)| ≤ M1(|g0|+ L2) + hM1H0‖A1A
−1
0 ‖(L2h+

√
h‖g1‖L2(−h,0:D(A0)))

+M1L1T +M1

√
T ||k||L2(0,T ;H),

then F(Xr) ⊂ Xr ⊂ C([0, T ];H). Observe that 0 < t < t′ ≤ T . From (3.1),
Assumption (A) and Proposition 2.3, we have

|x(t′)− x(t)|

(3.3)

≤ |(W (t′)−W (t))(g0 − φ(x))|

+

∫ 0

−h

∫ s

−h

|(W (t′ − s+ σ)−W (t− s+ σ))a(σ)A1(g
1(s)− esφ(x))|dσds

+

∫ t

0

|W (t′ − s)−W (t− s)||f(s, x(s), x(b1(s)), . . . , x(bm(s))) + k(s)|ds

+

∫ t′

t

|W (t′ − s)||f(s, x(s), x(b1(s)), . . . , x(bm(s))) + k(s)|ds

≤ Cn(t
′ − t)α(|g0 − φ(x)| + TL1 +

√
T ||k||L2(0,T ;H))

+ Cn

∫ 0

−h

∫ s

−h

(t′ − t)αH0‖A1A
−1
0 ‖B(H,H)‖g1(s)− esφ(x))‖D(A0)dσds

+M1L1(t
′ − t) +

∫ t′

t

|k(s)|ds

≤ Cn(t
′ − t)α(|g0 − φ(x)| + TL1 +

√
T ||k||L2(0,T ;H))



636 JIN-MUN JEONG AND SU JIN CHEON

+ CnH0‖A1A
−1
0 ‖B(H,H)(t

′ − t)α
∫ 0

−h

‖g1(s)− esφ(x))‖D(A0)ds

+M1L1(t
′ − t) + (t′ − t)1/2||k||L2(0,T ;H).

Thus if 0 < κ ≤ 1
2 , then we have

|x(t′)− x(t)| ≤ const.(t′ − t)κ(1 + |g0|+ ||g1||L2(−h,0;D(A0)) + ||k||L2(0,T ;H)).

Hence F(Xr) is a uniformly equicontinuous family of functions. Furthermore,
from (2.17) in Proposition 2.4 and Assumption (A) it follows that

|(Fx)(t)| ≤ ||Fx||C([0,T ];H)

≤ CT (|g0 − φ(x)| + ||g1 − e·φ(x)||L2(−h,0;V )

||f(·, x(·), x(b1(·)), . . . , x(bm(·)) + k||L2(0,T ;V ∗))

≤ const.(1 + |g0|+ ||g1||L2(−h,0;D(A0)) + ||k||L2(0,T ;H)).

Thus F(Xr) is equibounded.
From Lemma 3.1 it follows that the set V (t) = {(Fx)(t) : x ∈ Xr} is rela-

tively compact in H . By (ii) of Assumption (A), V (0) is obviously is relatively
compact. The proof for the continuity of F is routine, and thus is omitted.
Therefore, applying Schauder’s fixed point theorem, it holds that F has a fixed
point in Xr, and hence any fixed point of F is a mild solution of (NRE).

Assume that g0 −φ(x) ∈ F = (D(A0), H) 1

2
,2. Then in virtue of Proposition

2.4, there exists a solution x of (NRE) belonging to

L2(−h, T ;D(A0)) ∩W 1,2(0, T ;H) ⊂ C([0, T ];F )

and satisfying

||x||L2(−h,T ;D(A0))∩W 1,2(0,T ;H)

≤ C′
1(||g0 − φ(x)||(D(A0),H) 1

2
,2

+ ||g1 − e·φ(x)||L2(−h,0;D(A0)) + ||k||L2(0,T ;H))

≤ C′
2(1 + ||g0||(D(A0),H) 1

2
,2

+ ||g1||L2(−h,0;D(A0)) + ||k||L2(0,T ;H)).
�

Theorem 3.3. Suppose that the functions f , φ and bi (i = 1, . . . ,m) satisfy
Assumption (A), g1 is a Hölder continuous function in [−h, 0] with values
in D(A0), and k is a Hölder continuous function in [0, T ] with values in H.
Assume, additionally, that

(i) there exists a constant L3 > 0 such that

|f(s, z0, z1, . . . , zm)− f(s̃, z̃0, z̃1, . . . , z̃m)| ≤ L3

(

|s− s̃|+
m
∑

i=0

‖zi − z̃i‖
)

for s, s̃ ∈ I, zi, z̃i ∈ Hr(i = 0, 1, . . . ,m),

where r is the constant in (3.2),
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(ii) x is a solution of problem (NRE) and there is a constant H > 0 such
that

|x(bi(s))− x(bi(s̃))| ≤ H|x(s)− x(s̃)| for s, s̃ ∈ I.

Then x represented as in (2.12) is the unique solution of (NRE) satisfying the
initial condition

x(s) = g1(s)− esφ(x), s ∈ [−h, 0].

Proof. Put

G(s) = g1(s)− esφ(s), s ∈ [−h, 0],

K(t) = f(t, x(t), x(b1(t)), . . . , x(bm(t))) + k(t), t ∈ [0, T ].

Then in virtue of Theorem 2 of [11], it is sufficient to prove that G and K are
Lipschitz continuous in [−h, 0] and in [0, T ], respectively. Since g1 is a Hölder
continuous function in [−h, 0] with values in D(A0) and

|es′φ(x) − esφ(x)| = |
∫ 1

0

d

dσ
(es

′σes(1−σ))φ(x)dσ|

≤
∫ 1

0

|es′σes(1−σ)(s′ − s)φ(x)|dσ

≤ (s′ − s)es
′ ||φ(x)||D(A0),

it holds that G is Hölder continuous. Furthermore, since

|K(t′)−K(t)|
≤ |k(t′)− k(t)|

+ |f(t′, x(t′), x(b1(t′)), . . . , x(bm(t′)))− f(t, x(t), x(b1(t)), . . . , x(bm(t)))|

≤ |k(t′)− k(t)|+ L3(|t′ − t|+
m
∑

i=1

|x(bi(t′))− x(bi(t))|)

≤ |k(t′)− k(t)|+ L3(|t′ − t|+mH|x(t′)− x(t)|),

from (3.3) and the Hölder continuity of k, it follows thatK is Hölder continuous
in [0, T ]. �

4. Example

Let

H = L2(0, π), V = H1
0 (0, π), V ∗ = H−1(0, π),

B(u, v) =

∫ π

0

du(x)

dx

dv(x)

dx
dx

and

Ai = d2/dx2(i = 0, 1) with D(Ai) = {y ∈ H2(0, π) : y(0) = y(π) = 0}.
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We consider the following nonlinear term:

f(s, z0, z1, . . . , zm) = l(s) +
γ
∑m

i=1 zi
1 + |

∑m
i=1 zi|

, γ ∈ R,

where

|l(s)− l(s̃)| ≤ σ|s− s̃|, l(0) = 0,

which comes out in a feedback control system for a diffusion and reaction
process in a enzyme membrane. Then

|f(s, z0, z1, . . . , zm)| ≤ sup
0≤t≤T

|l(t)|+ |γ|,

|f(s, z0, z1, . . . , zm)− f(s̃, z̃0, z̃1, . . . , z̃m)|

≤ |l(s)− l(s̃)|+ |γ|(1 + 2|∑m
i=1 z̃i|)(

∑m
i=1 zi −

∑m
i=1 z̃i)

(1 + |∑m
i=1 zi|)(1 + |∑m

i=1 z̃i|)

≤ σ|s− s̃|+ 2|γ|
m
∑

i=1

|zi − z̃i|.

Let t1, . . . , tp be given real numbers such that 0 < t1 < . . . < tp < T . Then we
can give φ by the formula

φ(x) =

p
∑

i=1

dix(ti) x ∈ C([0, T ];L2(0, π)),

where di (i = 1, . . . , p) are given constants. Let the solution x be represented
by the following retarded semilinear parabolic type equation:











d
dtx(t) = A0x(t) +

∫ 0

−h a(s)A1x(t+ s)ds

+f(t, x(t), x(b1(t)), . . . , x(bm(t))) + k(t), t ≥ 0,

x(0) = g0 −∑p
i=1 dix(ti), x(s) = g1(s)− esφ(x), −h ≤ s < 0,

where the forcing term k belongs to L2(0, T ;V ∗), bi(t) = t (i = 1, . . . ,m).
Then the nonlinear term f , φ and bi (i = 1, . . . ,m) satisfy the conditions of
Theorems 3.2 and 3.3.
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