• Title/Summary/Keyword: nonlocal model

Search Result 266, Processing Time 0.029 seconds

Eringen's nonlocal elasticity theory for wave propagation analysis of magneto-electro-elastic nanotubes

  • Ebrahimi, Farzad;Dehghan, M.;Seyfi, Ali
    • Advances in nano research
    • /
    • v.7 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • In this article, wave propagation characteristics in magneto-electro-elastic (MEE) nanotube considering shell model is studied in the framework nonlocal theory. To account for the small-scale effects, the Eringen's nonlocal elasticity theory of is applied. Nonlocal governing equations of MEE nanotube have been derived utilizing Hamilton's principle. The results of this investigation have been accredited by comparing them of previous studies. An analytical solution of governing equations is used to obtain phase velocities and wave frequencies. The influences of different parameters, such as different mode, nonlocal parameter, length parameter, geometry, magnetic field and electric field on wave propagation responses of MEE nanotube are expressed in detail.

A nonlocal system for the identification of active vibration response of chiral double walled CNTs

  • Alghamdi, Sami;Hussain, Muzamal;Khadimallah, Mohamed A.;Asghar, Sehar;Ghandourah, Emad;Alzahrani, Ahmed Obaid M.;Alzahrani, M.A.
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.353-361
    • /
    • 2022
  • In this study, an estimation regarding nonlocal shell model based on wave propagation approach has been considered for vibrational behavior of the double walled carbon nanotubes with distinct nonlocal parameters. Vibrations of double walled carbon nanotubes for chiral indices (8, 3) have been analyzed. The significance of small scale is being perceived by developing nonlocal Love shell model. The influence of changing mechanical parameter Poisson's ratio has been investigated in detail. The dominance of boundary conditions via nonlocal parameter is shown graphically. It is found that on increasing the Poisson's ratio, the frequencies increases. It is noted that the frequencies of clamped-clamped frequencies are higher than that of simply-supported and clamped-free edge conditions. The outcomes of frequencies are tested with earlier computations.

Nonlinear vibration of functionally graded nano-tubes using nonlocal strain gradient theory and a two-steps perturbation method

  • Gao, Yang;Xiao, Wan-Shen;Zhu, Haiping
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.205-219
    • /
    • 2019
  • This paper analyzes nonlinear free vibration of the circular nano-tubes made of functionally graded materials in the framework of nonlocal strain gradient theory in conjunction with a refined higher order shear deformation beam model. The effective material properties of the tube related to the change of temperature are assumed to vary along the radius of tube based on the power law. The refined beam model is introduced which not only contains transverse shear deformation but also satisfies the stress boundary conditions where shear stress cancels each other out on the inner and outer surfaces. Moreover, it can degenerate the Euler beam model, the Timoshenko beam model and the Reddy beam model. By incorporating this model with Hamilton's principle, the nonlinear vibration equations are established. The equations, including a material length scale parameter as well as a nonlocal parameter, can describe the size-dependent in linear and nonlinear vibration of FGM nanotubes. Analytical solution is obtained by using a two-steps perturbation method. Several comparisons are performed to validate the present analysis. Eventually, the effects of various physical parameters on nonlinear and linear natural frequencies of FGM nanotubes are analyzed, such as inner radius, temperature, nonlocal parameter, strain gradient parameter, scale parameter ratio, slenderness ratio, volume indexes, different beam models.

Forced vibration of nanorods using nonlocal elasticity

  • Aydogdu, Metin;Arda, Mustafa
    • Advances in nano research
    • /
    • v.4 no.4
    • /
    • pp.265-279
    • /
    • 2016
  • Present study interests with the longitudinal forced vibration of nanorods. The nonlocal elasticity theory of Eringen is used in modeling of nanorods. Uniform, linear and sinusoidal axial loads are considered. Dynamic displacements are obtained for nanorods with different geometrical properties, boundary conditions and nonlocal parameters. The nonlocal effect increases dynamic displacement and frequency when compared with local elasticity theory. Present results can be useful for modeling of the axial nanomotors and nanoelectromechanical systems.

Finite strain nonlinear longitudinal vibration of nanorods

  • Eren, Mehmet;Aydogdu, Metin
    • Advances in nano research
    • /
    • v.6 no.4
    • /
    • pp.323-337
    • /
    • 2018
  • The nonlinear free vibration of a nanorod subjected to finite strain is investigated. The governing equation of motion in material configuration in terms of displacement is determined. By means of Galerkin method, the Fourier series solutions satisfying some typical boundary conditions are determined. The amplitude-frequency relationship and interaction between the modes are studied. The effects of nonlocal elasticity are shown for different length of nanotubes and nonlocal parameter. The results show that nonlocal effects lead to additional internal modal interaction for nanorod vibrations.

A nonlocal integral Timoshenko beam model for free vibration analysis of SWCNTs under thermal environment

  • Liani, Mohamed;Moulay, Noureddine;Bourada, Fouad;Addou, Farouk Yahia;Bourada, Mohamed;Tounsi, Abdelouahed;Hussain, Muzamal
    • Advances in materials Research
    • /
    • v.11 no.1
    • /
    • pp.1-22
    • /
    • 2022
  • In this paper, the nonlocal integral Timoshenko beam model is employed to study the free vibration characteristics of singled walled carbon nanotubes (SWCNTs) including the thermal effect. Based on the nonlocal continuum theory, the governing equations of motion are formulated by considering thermal effect. The influences of small scale parameter, the chirality of SWCNTs, the vibrational mode number, the aspect ratio of SWCNTs and temperature changes on the thermal vibration properties of single-walled nanotubes are examined and discussed. Results indicate significant dependence of natural frequencies on the nonlocal parameter, the temperature change, the aspect ratio and the chirality of SWCNTs. This work should be useful reference for the application and the design of nanoelectronics and nanoelectromechanical devices that make use of the thermal vibration properties of SWCNTs.

A Comparison of the Rudin-Osher-Fatemi Total Variation model and the Nonlocal Means Algorithm

  • Adiya, Enkhbolor;Choi, Heung-Kook
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.6-9
    • /
    • 2012
  • In this study, we compare two image denoising methods which are the Rudin-Osher-Fatemi total variation (TV) model and the nonlocal means (NLM) algorithm on medical images. To evaluate those methods, we used two well known measuring metrics. The methods are tested with a CT image, one X-Ray image, and three MRI images. Experimental result shows that the NML algorithm can give better results than the ROF TV model, but computational complexity is high.

  • PDF

Eringen's nonlocal model sandwich with Kelvin's theory for vibration of DWCNT

  • Hussain, Muzamal;Naeem, Muhammad N.;Asghar, Sehar;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.25 no.4
    • /
    • pp.343-354
    • /
    • 2020
  • In this paper, vibration characteristics of chiral double-walled carbon nanotubes entrenched on Kelvin's model. The Eringen's nonlocal elastic equations are being combined with Kelvin's theory to observe small scale response. A nonlocal model has been formulated to explore the frequency spectrum of chiral double-walled CNTs along with diversity of indices and nonlocal parameter. Wave propagation is proposed technique to establish field equations of model subjected to four distinct end supports. The significance of scale effect in relevance of length-to-diameter and thickness- to- radius ratios are discussed and displayed in detail.

Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects

  • Eltaher, Mohamed A.;Omar, Fatema-Alzahraa;Abdalla, Waleed S.;Kabeel, Abdallah M.;Alshorbagy, Amal E.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.141-151
    • /
    • 2020
  • This manuscript tends to investigate influences of nanoscale and surface energy on a static bending and free vibration of piezoelectric perforated nanobeam structural element, for the first time. Nonlocal differential elasticity theory of Eringen is manipulated to depict the long-range atoms interactions, by imposing length scale parameter. Surface energy dominated in nanoscale structure, is included in the proposed model by using Gurtin-Murdoch model. The coupling effect between nonlocal elasticity and surface energy is included in the proposed model. Constitutive and governing equations of nonlocal-surface perforated Euler-Bernoulli nanobeam are derived by Hamilton's principle. The distribution of electric potential for the piezoelectric nanobeam model is assumed to vary as a combination of a cosine and linear variation, which satisfies the Maxwell's equation. The proposed model is solved numerically by using the finite-element method (FEM). The present model is validated by comparing the obtained results with previously published works. The detailed parametric study is presented to examine effects of the number of holes, perforation size, nonlocal parameter, surface energy, boundary conditions, and external electric voltage on the electro-mechanical behaviors of piezoelectric perforated nanobeams. It is found that the effect of surface stresses becomes more significant as the thickness decreases in the range of nanometers. The effect of number of holes becomes significant in the region 0.2 ≤ α ≤ 0.8. The current model can be used in design of perforated nano-electro-mechanical systems (PNEMS).

Small scale computational vibration of double-walled CNTs: Estimation of nonlocal shell model

  • Asghar, Sehar;Khadimallah, Mohamed Amine;Naeem, Muhammad N.;Ghamkhar, Madiha;Khedher, Khaled Mohamed;Hussain, Muzamal;Bouzgarrou, Souhail Mohamed;Ali, Zainab;Iqbal, Zafar;Mahmoud, S.R.;Algarni, Ali;Taj, Muhammad;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • v.10 no.4
    • /
    • pp.345-355
    • /
    • 2020
  • In this paper, vibration characteristics of double-walled carbon nanotubes (CNTs) is studied based upon nonlocal elastic shell theory. The significance of small scale is being perceived by developing nonlocal Love shell model. The wave propagation approach has been utilized to frame the governing equations as eigen value system. The influence of nonlocal parameter subjected to diverse end supports has been overtly analyzed. An appropriate selection of material properties and nonlocal parameter has been considered. The influence of changing mechanical parameter Poisson's ratio has been investigated in detail. The dominance of boundary conditions via nonlocal parameter is shown graphically. The results generated furnish the evidence regarding applicability of nonlocal shell model and also verified by earlier published literature.