Browse > Article
http://dx.doi.org/10.12989/anr.2016.4.4.265

Forced vibration of nanorods using nonlocal elasticity  

Aydogdu, Metin (Department of Mechanical Engineering, Trakya University)
Arda, Mustafa (Department of Mechanical Engineering, Trakya University)
Publication Information
Advances in nano research / v.4, no.4, 2016 , pp. 265-279 More about this Journal
Abstract
Present study interests with the longitudinal forced vibration of nanorods. The nonlocal elasticity theory of Eringen is used in modeling of nanorods. Uniform, linear and sinusoidal axial loads are considered. Dynamic displacements are obtained for nanorods with different geometrical properties, boundary conditions and nonlocal parameters. The nonlocal effect increases dynamic displacement and frequency when compared with local elasticity theory. Present results can be useful for modeling of the axial nanomotors and nanoelectromechanical systems.
Keywords
nonlocal theory; nanorod model; forced vibration; dynamic displacement; mode shape;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Arda, M. and Aydogdu, M. (2016), "Torsional wave propagation in multiwalled carbon nanotubes using nonlocal elasticity", Appl. Phys. A., 122(3), 219.
2 Aydogdu, M. (2009a), "A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration", Phys. E Low-Dimens. Syst. Nanostruct., 41(9), 1651-1655.   DOI
3 Aydogdu, M. (2012a), "Longitudinal wave propagation in nanorods using a general nonlocal unimodal rod theory and calibration of nonlocal parameter with lattice dynamics", Int. J. Eng. Sci., 5617-28.
4 Aydogdu, M. (2014), "Longitudinal wave propagation in multiwalled carbon nanotubes", Compos. Struct., 107, 578-584.   DOI
5 Ansari, R., Gholami, R., Hosseini, K. and Sahmani, S. (2011), "A sixth-order compact finite difference method for vibrational analysis of nanobeams embedded in an elastic medium based on nonlocal beam theory", Math. Comput. Model., 54(11-12), 2577-2586.   DOI
6 Arash, B. and Wang, Q. (2012), "A review on the application of nonlocal elastic models in modeling of carbon nanotubes and graphenes", Comput. Mater. Sci., 51(1), 303-313.   DOI
7 Aydogdu, M. (2009b), "Axial vibration of the nanorods with the nonlocal continuum rod model", Phys. E Low-dimensional Syst Nanostructures, 41(5), 861-864.   DOI
8 Aydogdu, M. (2012b), "Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity", Mech. Res. Commun., 4334-40.
9 Aydogdu, M. and Arda, M. (2014), "Torsional vibration analysis of double walled carbon nanotubes using nonlocal elasticity", Int. J. Mech. Mater. Des., doi: 10.1007/s10999-014-9292-8   DOI
10 Danesh, M., Farajpour, A. and Mohammadi, M. (2012), "Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method", Mech. Res. Commun., 39(1), 23-27.   DOI
11 Demir, C., Civalek, O. and Akgoz, B. (2010), "Free vibration analysis of carbon nanotubes based on shear deformable beam theory by discrete singular convolution technique", Math. Comput. Appl., 15(1), 57-65.
12 Duan, W.H., Wang, C.M. and Zhang, Y.Y. (2007), "Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics", J. Appl. Phys., 101(2), 24305.   DOI
13 Ece, M.C. and Aydogdu, M. (2007), "Nonlocal elasticity effect on vibration of in-plane loaded double-walled carbon nano-tubes", Acta Mech., 190(1-4), 185-195.   DOI
14 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710.   DOI
15 Eringen, A.C. (2007), Nonlocal Continuum Field Theories, Springer, New York
16 Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q. and Yakobson, B.I. (2008), "Nonlocal shell model for elastic wave propagation in single-and double-walled carbon nanotubes", J. Mech. Phys. Solid., 56(12), 3475-3485.   DOI
17 Kiani, K. (2010), "A meshless approach for free transverse vibration of embedded single-walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect", Int. J. Mech. Sci., 52(10), 1343-1356.   DOI
18 Huang, Z.X. (2012), "Nonlocal effects of longitudinal vibration in nanorod with internal long range interactions", Int. J. Solid. Struct., 49(1516), 2150-2154.   DOI
19 Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354, 56-58.   DOI
20 Karaoglu, P. and Aydogdu, M. (2010), "On the forced vibration of carbon nanotubes via a non-local Euler--Bernoulli beam model", Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 224(2), 497-503.   DOI
21 Kiani, K. (2014), "Nonlocal continuous models for forced vibration analysis of two-and three-dimensional ensembles of single-walled carbon nanotubes", Phys. E Low-dimens. Syst. Nanostruct., 60229-245.
22 Kiani, K. (2010), "Free longitudinal vibration of tapered nanowires in the context of nonlocal continuum theory via a perturbation technique", Phys. E Low-dimens. Syst. Nanostruct., 43(1) 387-397.   DOI
23 Kiani, K. (2014), "Nonlocal discrete and continuous modeling of free vibration of stocky ensembles of vertically aligned singlewalled carbon nanotubes", Curr. Appl. Phys., 14(8), 1116-1139.   DOI
24 Kiani, K. (2014), "In and out of plane dynamic flexural behaviors of two dimensional ensembles of vertically aligned singlewalled carbon nanotubes", Physica B: Condens. Matter., 449, 164-180.   DOI
25 Kiani, K. (2014), "Free dynamic analysis of functionally graded tapered nanorods via a newly developed nonlocal surface energybased integrodifferential model", Compos. Struct., 139, 151-166.
26 Kiani, K. (2010), "Nonlocal integro differential modeling of vibration of elastically supported nanorods", Phys. E Low-dimens. Syst. Nanostruct., 83, 151-163.
27 Narendar, S. and Gopalakrishnan, S. (2010), "Nonlocal scale effects on ultrasonic wave characteristics of nanorods", Phys. E Low-dimens. Syst. Nanostruct., 42(5), 1601-1604.   DOI
28 Murmu, T. and Pradhan, S.C. (2009), "Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity theory", Comput. Mater. Sci., 46(4), 854-859.   DOI
29 Murmu, T. and Adhikari, S. (2010), "Non local effects in the longitudinal vibration of doublenanorod systems", Physica E, 43(1), 415-422.   DOI
30 Narendar, S. (2011), "Terahertz wave propagation in uniform nanorods: A nonlocal continuum mechanics formulation including the effect of lateral inertia", Phys. E Low-dimens. Syst. Nanostruct., 43(4), 1015-1020.   DOI
31 Narendar, S. and Gopalakrishnan, S. (2011), "Axial wave propagation in coupled nanorod system with nonlocal small scale effects", Compos. Part B-Eng, 42(7), 2013-2023   DOI
32 Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to nanotechnology", Int. J. Eng. Sci., 41(3), 305-312.   DOI
33 Reddy, J.N.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45(2-8), 288-307.   DOI
34 Sudak, L.J. (2003), "Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics", J. Appl. Phys., 94(11), 7281.   DOI
35 Simsek, M. (2011), "Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube system under a moving nanoparticle", Comput. Mater. Sci., 50(7), 2112-2123.   DOI
36 Simsek, M. (2010), "Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory", Phys. E Low-dimens. Syst. Nanostruct., 43(1), 182-191.   DOI
37 Wang, Q. and Liew, K.M. (2007), "Application of nonlocal continuum mechanics to static analysis of micro-and nano-structures", Phys. Lett. A, 363(3), 236-242.   DOI
38 Truax, S., Lee, S.W., Muoth, M. and Hierold, C. (2014), "Axially tunable carbon nanotube resonators using co-integrated microactuators", Nano Lett., 14(11), 6092-6.   DOI
39 Wang, L. and Hu, H. (2005), "Flexural wave propagation in single-walled carbon nanotubes", Phys. Rev. B, 71(19), 195412.   DOI
40 Wang, Q. (2005), "Wave propagation in carbon nanotubes via nonlocal continuum mechanics", J. Appl. Phys., 98(12), 124301.   DOI
41 Wang, Q. and Varadan, V.K. (2006), "Wave characteristics of carbon nanotubes", Int. J. Solid. Struct., 43(2), 254-265.   DOI
42 Wang, Q. and Wang, C.M. (2007), "The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes", Nanotechnol., 18(7), 75702.   DOI