Browse > Article
http://dx.doi.org/10.12989/sem.2020.76.1.141

Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects  

Eltaher, Mohamed A. (Mechanical Engineering Dept., Faculty of Engineering, King Abdulaziz University)
Omar, Fatema-Alzahraa (Mechanical Design and Production Dept., Faculty of Engineering, Zagazig University)
Abdalla, Waleed S. (Mechanical Design and Production Dept., Faculty of Engineering, Zagazig University)
Kabeel, Abdallah M. (Mechanical Design and Production Dept., Faculty of Engineering, Zagazig University)
Alshorbagy, Amal E. (Mechanical Design and Production Dept., Faculty of Engineering, Zagazig University)
Publication Information
Structural Engineering and Mechanics / v.76, no.1, 2020 , pp. 141-151 More about this Journal
Abstract
This manuscript tends to investigate influences of nanoscale and surface energy on a static bending and free vibration of piezoelectric perforated nanobeam structural element, for the first time. Nonlocal differential elasticity theory of Eringen is manipulated to depict the long-range atoms interactions, by imposing length scale parameter. Surface energy dominated in nanoscale structure, is included in the proposed model by using Gurtin-Murdoch model. The coupling effect between nonlocal elasticity and surface energy is included in the proposed model. Constitutive and governing equations of nonlocal-surface perforated Euler-Bernoulli nanobeam are derived by Hamilton's principle. The distribution of electric potential for the piezoelectric nanobeam model is assumed to vary as a combination of a cosine and linear variation, which satisfies the Maxwell's equation. The proposed model is solved numerically by using the finite-element method (FEM). The present model is validated by comparing the obtained results with previously published works. The detailed parametric study is presented to examine effects of the number of holes, perforation size, nonlocal parameter, surface energy, boundary conditions, and external electric voltage on the electro-mechanical behaviors of piezoelectric perforated nanobeams. It is found that the effect of surface stresses becomes more significant as the thickness decreases in the range of nanometers. The effect of number of holes becomes significant in the region 0.2 ≤ α ≤ 0.8. The current model can be used in design of perforated nano-electro-mechanical systems (PNEMS).
Keywords
perforated piezoelectric nanobeams; surface energy; nonlocal elasticity; mechanical behaviors; finite element method;
Citations & Related Records
Times Cited By KSCI : 18  (Citation Analysis)
연도 인용수 순위
1 Eltaher, M. A., Almalki, T. A., Ahmed, K. I. and Almitani, K. H. (2019b), "Characterization and behaviors of single walled carbon nanotube by equivalent-continuum mechanics approach", Adv. Nano Res., 7(1), 39-49. http://dx.doi.org/10.12989/anr.2019.7.1.039.   DOI
2 Eltaher, M. A., Omar, F. A., Abdalla, W. S. and Gad, E. H. (2019c), "Bending and vibrational behaviors of piezoelectric nonlocal nanobeam including surface elasticity", Wave Random Complex Media, 29(2), 264-280. https://doi.org/10.1080/17455030.2018.1429693.   DOI
3 Eltaher, M. A. and Mohamed, N. (2020), "Nonlinear Stability and Vibration of Imperfect CNTs by Doublet Mechanics", Appl. Math. Comput.. 382, https://doi.org/10.1016/j.amc.2020.125311.
4 Eltaher, M.A., Mohamed, N.A., (2020), "Vibration of nonlocal perforated nanobeams under general boundary conditions", Smart Struct. Syst., 25(4), 501-514. https://doi.org/10.12989/sss.2020.25.4.501.   DOI
5 Zand, M. M. and Ahmadian, M. (2009), "Vibrational analysis of electrostatically actuated microstructures considering nonlinear effects", Communications Nonlinear Sci. Numerical Simulation, 14(4), 1664-1678. https://doi.org/10.1016/j.cnsns.2008.05.009.   DOI
6 Zarei, M., Faghani, G., Ghalami, M. and Rahimi, G. H. (2018), "Buckling and vibration analysis of tapered circular nano plate", J. Appl. Comput. Mech., 4(1), 40-54. https://dx.doi.org/10.22055/jacm.2017.22176.1127.
7 Eringen, A. C. and Edelen, D. (1972), "On nonlocal elasticity", J. Eng. Sci., 10(3), 233-248. https://doi.org/10.1016/0020-7225(72)90039-0.   DOI
8 Eltaher, M.A., Omar F.A., Abdraboh, A.M., Abdalla, W.S., and Alshorbagy, A.E., (2020), "Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts", Smart Struct. Syst., 25(2). 219-228. https://doi.org/10.12989/sss.2020.25.2.219
9 Eringen, A. C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803.   DOI
10 Eringen, A. C. (1984), "Plane waves in nonlocal micropolar elasticity", J. Eng. Sci., 22(8-10), 1113-1121. https://doi.org/10.1016/0020-7225(84)90112-5.   DOI
11 Huang, G. Y. and Yu, S. W. (2006), "Effect of surface piezoelectricity on the electromechanical behaviour of a piezoelectric ring", Physica Status Solidi (b), 243(4), R22-R24. https://doi.org/10.1002/pssb.200541521.   DOI
12 Faraji-Oskouie, M., Norouzzadeh, A., Ansari, R. and Rouhi, H. (2019), "Bending of small-scale Timoshenko beams based on the integral/differential nonlocal-micropolar elasticity theory: a finite element approach", Appl. Math. Mech., 1-16. https://doi.org/10.1007/s10483-019-2491-9.
13 Gheshlaghi, B. and Hasheminejad, S. M. (2012), "Vibration analysis of piezoelectric nanowires with surface and small scale effects", Current Appl. Phys., 12(4), 1096-1099. https://doi.org/10.1016/j.cap.2012.01.014.   DOI
14 Hamed, M. A., Sadoun, A. M. and Eltaher, M. A. (2019), "Effects of porosity models on static behavior of size dependent functionally graded beam", Struct. Eng. Mech., 71(1), 89-98. https://doi.org/10.12989/sem.2019.71.1.089.   DOI
15 Jandaghian, A. and Rahmani, O. (2016), "An analytical solution for free vibration of piezoelectric nanobeams based on a nonlocal elasticity theory", J. Mech., 32(2), 143-151. https://doi.org/10.1017/jmech.2015.53.   DOI
16 Alshorbagy, A. E., Eltaher, M. A. and Mahmoud, F. F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.   DOI
17 Abdalrahmaan, A.A., Eltaher, M.A., Kabeel, A.M., Abdraboh, A.M., and Hendi, A.A. (2019). "Free and forced analysis of perforated beams", Steel Compos. Struct., 31(5), 489-502. https://doi.org/10.12989/scs.2019.31.5.489.   DOI
18 Almitani, K.H., Abdalrahmaan, A.A., Eltaher, M.A., (2019), "On forced and free vibrations of cutout squared beams", Steel Compos. Struct., 32(5), 643-655. https://doi.org/10.12989/scs.2019.32.5.643.   DOI
19 Almitani, K.H., Abdalrahmaan, A.A., Eltaher, M.A., (2020), "Stability of perforated nanobeams incorporating surface energy effects", Steel Compos. Struct., 35(4), 555-566. https://doi.org/10.12989/scs.2020.35.4.555.   DOI
20 Ansari, R., Gholami, R., Norouzzadeh, A. and Darabi, M. A. (2015), "Surface stress effect on the vibration and instability of nanoscale pipes conveying fluid based on a size-dependent Timoshenko beam model", Acta Mechanica Sinica, 31(5), 708-719. https://doi.org/10.1007/s10409-015-0435-4.   DOI
21 Ansari, R., Torabi, J. and Hassani, R. (2019), "Vibration analysis of FG-CNTRC plates with an arbitrarily shaped cutout based on the variational differential quadrature finite element method". Mater. Res. Express, 6(12), 125086. https://doi.org/10.1088/2053-1591/ab5b57.   DOI
22 Liu, C. and Rajapakse, R. K. N. D. (2009), "Continuum models incorporating surface energy for static and dynamic response of nanoscale beams", IEEE Transactions on Nanotechnology, 9(4), 422-431. https://doi.org/10.1109/TNANO.2009.2034142.   DOI
23 Jandaghian, A. A. and Rahmani, O. (2015), "On the buckling behavior of piezoelectric nanobeams: An exact solution", J. Mech. Sci. Technol., 29(8), 3175-3182. https://doi.org/10.1007/s12206-015-0716-7.   DOI
24 Juntarasaid, C., Pulngern, T. and Chucheepsakul, S. (2012), "Bending and buckling of nanowires including the effects of surface stress and nonlocal elasticity", Physica E, 46, 68-76. https://doi.org/10.1016/j.physe.2012.08.005.   DOI
25 Kerid, R., Bourouina, H., Yahiaoui, R., Bounekhla, M. and Aissat, A. (2019), "Magnetic field effect on nonlocal resonance frequencies of structure-based filter with periodic square holes network", Physica E, 105, 83-89. https://doi.org/10.1016/j.physe.2018.05.021.   DOI
26 Kheibari, F. and Beni, Y. T. (2017), "Size dependent electro-mechanical vibration of single-walled piezoelectric nanotubes using thin shell model", Mater. Design, 114, 572-583. https://doi.org/10.1016/j.matdes.2016.10.041.   DOI
27 Lazarus, A., Thomas, O. and Deu, J.-F. (2012), "Finite element reduced order models for nonlinear vibrations of piezoelectric layered beams with applications to NEMS", Finite Elements Analysis Design, 49(1), 35-51. https://doi.org/10.1016/j.finel.2011.08.019.   DOI
28 Luschi, L. and Pieri, F. (2014), "An analytical model for the determination of resonance frequencies of perforated beams", J. Micromechanics Microeng., 24(5), 055004. https://doi.org/10.1088/0960-1317/24/5/055004.   DOI
29 Luschi, L. and Pieri, F. (2016), "An analytical model for the resonance frequency of square perforated Lame-mode resonators", Sensors Actuators B Chem., 222, 1233-1239. https://doi.org/10.1016/j.snb.2015.07.085.   DOI
30 Bourouina, H., Yahiaoui, R., Kerid, R., Ghoumid, K., Lajoie, I., Picaud, F. and Herlem, G. (2020), "The influence of hole networks on the adsorption-induced frequency shift of a perforated nanobeam using non-local elasticity theory", J. Phys. Chem. Solids, 136, 109201. https://doi.org/10.1016/j.jpcs.2019.109201.   DOI
31 Candelas, P., Fuster, J. M., Perez-Lopez, S., Uris, A. and Rubio, C. (2019), "Observation of ultrasonic Talbot effect in perforated plates", Ultrasonics, 94, 281-284. https://doi.org/10.1016/j.ultras.2018.08.019.   DOI
32 Chen, X. and Liew, K. (2004), "Buckling of rectangular functionally graded material plates subjected to nonlinearly distributed in-plane edge loads", Smart Mater. Struct., 13(6), 1430. https://doi.org/10.1088/0964-1726/13/6/014.   DOI
33 Eltaher, M., Alshorbagy, A. E. and Mahmoud, F. (2013), "Vibration analysis of Euler-Bernoulli nanobeams by using finite element method", Appl. Math. Model., 37(7), 4787-4797. https://doi.org/10.1016/j.apm.2012.10.016.   DOI
34 Eltaher, M. A., Mahmoud, F. F., Assie, A. E. and Meletis, E. I. (2013), "Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams", Appl. Math. Comput., 224, 760-774. https://doi.org/10.1016/j.amc.2013.09.002.   DOI
35 Eltaher, M., Khairy, A., Sadoun, A. and Omar, F.-A. (2014), "Static and buckling analysis of functionally graded Timoshenko nanobeams", Appl. Math. Comput., 229, 283-295. https://doi.org/10.1016/j.amc.2013.12.072.   DOI
36 Mohamed, N., Eltaher, M.A., Mohamed, S., and Seddek, L.F., (2019), "Energy Equivalent Model in Analysis of Postbuckling of Imperfect Carbon Nanotubes Resting on Nonlinear Elastic Foundation", Struct. Eng. Mech., 70(6), 737-750. https://doi.org/10.12989/sem.2019.70.6.737.   DOI
37 Mahinzare, M., Ranjbarpur, H. and Ghadiri, M. (2018), "Free vibration analysis of a rotary smart two directional functionally graded piezoelectric material in axial symmetry circular nanoplate", Mech. Syst. Signal Processing, 100, 188-207. https://doi.org/10.1016/j.ymssp.2017.07.041.   DOI
38 Mahmoud, F. F., Eltaher, M. A., Alshorbagy, A. E. and Meletis, E. I. (2012), "Static analysis of nanobeams including surface effects by nonlocal finite element", J. Mech. Sci. Technol., 26(11), 3555-3563. https://doi.org/10.1007/s12206-012-0871-z.   DOI
39 Malikan, M. (2018), "Buckling analysis of a micro composite plate with nano coating based on the modified couple stress theory", J. Appl. Comput. Mech., 4(1), 1-15. https://dx.doi.org/10.22055/jacm.2017.21820.1117
40 Mohamed, N., Mohamed, S. A. and Eltaher, M. A. (2020), "Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model", Eng. Comput., 1-14. https://doi.org/10.1007/s00366-020-00976-2.
41 Moory-Shirbani, M., Sedighi, H. M., Ouakad, H. M. and Najar, F. (2018), "Experimental and mathematical analysis of a piezoelectrically actuated multilayered imperfect microbeam subjected to applied electric potential", Compos. Struct., 184, 950-960. https://doi.org/10.1016/j.compstruct.2017.10.062.   DOI
42 Murmu, T. and Adhikari, S. (2012), "Nonlocal frequency analysis of nanoscale biosensors", Sensors Actuators A, 173(1), 41-48. https://doi.org/10.1016/j.sna.2011.10.012.   DOI
43 Ouakad, H. M. and Sedighi, H. M. (2019), "Static response and free vibration of MEMS arches assuming out-of-plane actuation pattern", J. Non-Linear Mech., 110, 44-57. https://doi.org/10.1016/j.ijnonlinmec.2018.12.011.   DOI
44 Sedighi, H. M. (2014b), "Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory", Acta Astronautica, 95, 111-123. https://doi.org/10.1016/j.actaastro.2013.10.020.   DOI
45 Eltaher, M. A., Khater, M. E., Park, S., Abdel-Rahman, E. and Yavuz, M. (2016), "On the static stability of nonlocal nanobeams using higher-order beam theories", Adv. Nano Res., 4(1), 51-64. http://dx.doi.org/10.12989/anr.2016.4.1.051.   DOI
46 Eltaher, M., Abdraboh, A. and Almitani, K. (2018a), "Resonance frequencies of size dependent perforated nonlocal nanobeam", Microsyst. Technol., 24, 3925-3937. https://doi.org/10.1007/s00542-018-3910-6.   DOI
47 Reddy, J. (2007), "Nonlocal theories for bending, buckling and vibration of beams", J. Eng. Sci., 45(2-8), 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.   DOI
48 Rottenberg, X., Jansen, R., Cherman, V., Witvrouw, A., Tilmans, H., Zanaty, M., Khaled, A. and Abbas, M. (2013), "Meta-materials approach to sensitivity enhancement of MEMS BAW resonant sensors", Sensors, Baltimore, MD, USA. 1-4. https://doi.org/10.1109/ICSENS.2013.6688348.
49 Sedighi, H. M. (2014a), "The influence of small scale on the pull-in behavior of nonlocal nanobridges considering surface effect, Casimir and Van der Waals attractions", J. Appl. Mech., 6(03), 1450030. https://doi.org/10.1142/S1758825114500306.
50 Shishesaz, M., Shirbani, M. M., Sedighi, H. M. and Hajnayeb, A. (2018), "Design and analytical modeling of magneto-electro-mechanical characteristics of a novel magneto-electro-elastic vibration-based energy harvesting system", J. Sound Vib., 425, 149-169. https://doi.org/10.1016/j.jsv.2018.03.030.   DOI
51 Tanner, S. M., Gray, J. M., Rogers, C., Bertness, K. A. and Sanford, N. A. (2007), "High-Q GaN nanowire resonators and oscillators", Appl. Phys. Lett., 91(20), 203117. https://doi.org/10.1063/1.2815747.   DOI
52 Wang, Z. L. and Song, J. (2006), "Piezoelectric nanogenerators based on zinc oxide nanowire arrays", Science, 312(5771), 242-246. https://doi.org/10.1126/science.1124005   DOI
53 Eltaher, M. A., Mohamed, N., Mohamed, S. A. and Seddek, L. F. (2019a), "Periodic and nonperiodic modes of postbuckling and nonlinear vibration of beams attached to nonlinear foundations", Appl. Math. Model., 75, 414-445. https://doi.org/10.1016/j.apm.2019.05.026.   DOI
54 Eltaher, M., Kabeel, A., Almitani, K. and Abdraboh, A. (2018b), "Static bending and buckling of perforated nonlocal size-dependent nanobeams", Microsyst. Technol., 24(12), 4881-4893. https://doi.org/10.1007/s00542-018-3905-3.   DOI
55 Eltaher, M. A., Agwa, M. and Kabeel, A. (2018c), "Vibration analysis of material size-dependent CNTs using energy equivalent model", J. Appl. Comput. Mech., 4(2), 75-86. https://dx.doi.org/10.22055/jacm.2017.22579.1136.
56 Eltaher, M. A., Attia, M. A., Soliman, A. E. and Alshorbagy, A. E. (2018d), "Analysis of crack occurs under unsteady pressure and temperature in a natural gas facility by applying FGM", Struct. Eng. Mech., 66(1), 97-111. https://doi.org/10.12989/sem.2018.66.1.097.   DOI
57 Yan, Z., and L. Y. Jiang. (2011), "The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects", Nanotechnol., 22(24), 245703. https://doi.org/10.1088/0957-4484/22/24/245703.   DOI