Browse > Article
http://dx.doi.org/10.12989/cac.2020.25.4.343

Eringen's nonlocal model sandwich with Kelvin's theory for vibration of DWCNT  

Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
Naeem, Muhammad N. (Department of Mathematics, Govt. College University Faisalabad)
Asghar, Sehar (Department of Mathematics, Govt. College University Faisalabad)
Tounsi, Abdelouahed (Materials and Hydrology Laboratory University of Sidi Bel Abbes, Algeria Faculty of Technology Civil Engineering Department)
Publication Information
Computers and Concrete / v.25, no.4, 2020 , pp. 343-354 More about this Journal
Abstract
In this paper, vibration characteristics of chiral double-walled carbon nanotubes entrenched on Kelvin's model. The Eringen's nonlocal elastic equations are being combined with Kelvin's theory to observe small scale response. A nonlocal model has been formulated to explore the frequency spectrum of chiral double-walled CNTs along with diversity of indices and nonlocal parameter. Wave propagation is proposed technique to establish field equations of model subjected to four distinct end supports. The significance of scale effect in relevance of length-to-diameter and thickness- to- radius ratios are discussed and displayed in detail.
Keywords
concrete bridge; concrete structures; fatique; polymer concrete; reinforced concrete buildings; structural analysis/design;
Citations & Related Records
Times Cited By KSCI : 41  (Citation Analysis)
연도 인용수 순위
1 Reilly, R.M. (2007), "Carbon nanotubes: Potential benefits and risks of nanotechnology in nuclear medicine", J. Nucl. Medic., 48(7), 1039-1042. http://doi.org/10.2967/jnumed.107.041723.   DOI
2 Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 33(6), 805-822. https://doi.org/10.12989/scs.2019.33.6.805.   DOI
3 Sehar, A., Hussain, M., Naeem, M.N. and Tounsi, A. (2020), "Prediction and assessment of nolocal natural frequencies DWCNTs: Vibration Analysis", Comput. Concrete, 25(2), 133-144. https://doi.org/10.12989/cac.2020.25.2.133.   DOI
4 Li, R. and Kardomateas, G.A. (2007) "Vibration characteristics of multiwalled carbon nanotubes embedded in elastic media by a nonlocal elastic shell model", J. Appl. Mech., 74(6), 1087-1094. https://doi.org/10.1115/1.2722305.   DOI
5 Lieber, C.M. (2003), "Nanoscale science and technology building", MRS Bull., 28(7), 486-491. https://doi.org/10.1557/mrs2003.144.   DOI
6 Liew, K.M., Wong, C.H., He, X.Q. and Tan, M.J. (2005), "Thermal stability of single and multi-walled carbon nanotubes", Phys. Rev B, 71, 075424. https://doi.org/10.1103/PhysRevB.71.075424.   DOI
7 Liu, L. and Zang, Y. (2004), "Multi-wall carbon nanotubes as a new infrared detected material", Sensor. Actuat. A: Phys., 116(3), 394-39. https://doi.org/10.1016/j.sna.2004.05.016.   DOI
8 Hosseini, H. and Kolahchi, R. (2018), "Seismic response of functionally graded-carbon nanotubes-reinforced submerged viscoelastic cylindrical shell in hygrothermal environment", Physica E: Lowdimens. Syst. Nanostruct., 102, 101-109. https://doi.org/10.1016/j.physe.2018.04.037.   DOI
9 Hu, Y.G., Liew, K.M. and Wang, Q. (2012), "Modeling of vibrations of carbon nanotubes", Procedia Eng., 31, 343-347. https://doi.org/10.1016/j.proeng.2012.01.1034.   DOI
10 Hu, Y.G., Liew, K.M. and Wang, Q. (2012), "Modeling of vibrations of carbon nanotubes", Procedia Eng., 31, 343-347. https://doi.org/10.1016/j.proeng.2012.01.1034.   DOI
11 Brischetto, S. (2014), "A continuum elastic three-dimensional model for natural frequencies of single walled carbon nanotubes", Compos. Part B: Eng., 61, 222-228. https://doi.org/10.1016/j.compositesb.2014.01.046.   DOI
12 Chang, T., Li, G. and Gua, X. (2005), "Elastic axial buckling of carbon nanotubes via molecular mechanics model", Carbon, 43, 287-294. https://doi.org/10.1016/j.carbon.2004.09.012.   DOI
13 Chang, W.J. and Lee, H.L. (2009), "Free vibration of single-walled carbon nanotubes containing a fluid flow using a Timoshenko beam model", Phys. Lett. A, 373(10), 982-985. https://doi.org/10.1016/j.physleta.2009.01.011.   DOI
14 Chemi, A., Heireche, H., Zidour, M., Rakrak, K. and Bousahla, A.A. (2015), "Critical buckling load chiral double-walled carbon nanotubes using non-local elasticity theory", Adv. Neno Res., 3(4), 193-206. https://doi.org/10.12989/anr.2015.3.4.193.   DOI
15 Cornwell, C.F. and Wille, L.T. (1997), "Elastic properties of single-walled carbon nanotubes in compression", Solid State Commun., 101(8), 555-558. https://doi.org/10.1016/S0038-1098(96)00742-9.   DOI
16 Eltaher, M.A., Eman, S.A. and Mahmoud, F.F. (2013), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88. https://doi.org/10.1016/j.compstruct.2012.09.030.   DOI
17 Mori, H., Hirai, Y., Ogata, S., Akita, S. and Nakayama, Y. (2005), "Chirality dependence of mechanical properties of single walled cabon nanotubes under axial tensile strain", JPN J. Appl. Phys., 44(2), 42-45. https://doi.org/10.1143/JJAP.44.L1307.
18 Lu, Y.J., Wang, X. and Lu, G. (2007), "Buckling of embedded multi-walled carbon nanotubes under combined torsion and axial loading", Int. J. Solid. Struct., 44(1), 336-351. https://doi.org/10.1016/j.ijsolstr.2006.04.031.   DOI
19 Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889.   DOI
20 Mohsen, M. and Eyvazian, A. (2020), "Post-buckling analysis of Mindlin Cut out-plate reinforced by FG-CNTs", Steel Compos. Struct., 34(2), 289-297. https://doi.org/10.12989/scs.2020.34.2.289.   DOI
21 Motezaker, M. and Eyvazian, A. (2020), "Buckling load optimization of beam reinforced by nanoparticles", Struct. Eng. Mech., 73(5), 481-486. https://doi.org/10.12989/sem.2020.73.5.481.   DOI
22 Motezaker, M. and Kolahchi, R. (2017a), "Seismic response of concrete columns with nanofiber reinforced polymer layer", Comput. Concrete, 20(3), 361-368. https://doi.org/10.12989/cac.2017.20.3.361.   DOI
23 Motezaker, M. and Kolahchi, R. (2017b), "Seismic response of $SiO_{2}$ nanoparticles-reinforced concrete pipes based on DQ and newmark methods", Comput. Concrete, 19(6), 745-753. https://doi.org/10.12989/cac.2017.19.6.745.   DOI
24 Kroner, E. (1967), "Elasticity theory of materials with long range cohesive forces", Int. J. Solid. Struct., 3(5), 731-742. https://doi.org/10.1016/0020-7683(67)90049-2.   DOI
25 Lau, K.T. and Hui, D. (2002), "The revolutionary creation of new advanced materials-carbon nanotube composites", Compos. Part B: Eng., 33(4), 263-277. https://doi.org/10.1016/S1359-8368(02)00012-4.   DOI
26 Zou, R.D. and Foster, C.G. (1995), "Simple solution for buckling of orthotropic circular cylindrical shells", Thin Wall. Struct., 22(3), 143-158. https://doi.org/10.1016/0263-8231(94)00026-V.   DOI
27 Zidour, M., Benrahou, K., Semmah, A.W., Naceri, M., Belhadj, H.A., Bakhti, K. and Tounsi, A. (2012), "The thermal effect on vibration of single walled carbon nanotubes using nonlocal Timoshenko beam theory", J. Comput. Mater. Sci., 51(1), 252-260. https://doi.org/10.1016/j.commatsci.2011.07.021.   DOI
28 Zidour, M., Daouadji, T.H., Benrahou, K.H., Tounsi, A., AddaBedia, E.A. and Hadji, L. (2014), "Buckling analysis of chiral single-walled carbon nanotubes by using the nonlocal Timoshenko beam theory", Mech. Compos. Mater., 50(1), 95-104. https://doi.org/10.1007/s11029-014-9396-0.   DOI
29 Zidour, M., Daouadji, T.H., Benrahou, K.H., Tounsi, A., Bedia, E.A.A. and Hadji, L. (2014), "Buckling analysis of chiral single-walled carbon nanotubes by using nonlocal Timoshenko beam theory", Mech. Compos. Mater., 50(1), 95-104. https://doi.org/10.1007/s11029-014-9396-0.   DOI
30 Sosa, E.D., Darlington, T.K., Hanos, B.A. and O'Rourke, M.J.E. (2014), "Multifunctional thermally remendable nanocomposites", J. Compos., Article ID 705687, 12. http://dx.doi.org/10.1155/2014/705687.
31 Taj, M., Hussain, M., Naeem, M.N. and Tounsi, A. (2020b), "A effect of external force on cytoskeleton components in viscoelastic media", Computers and Concrete. (in Press)
32 Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Science and Business Media New York.
33 Eringen, A.C. (1972), "Linear theory of nonlocal elasticity and dispersion of plane waves", Int. J. Eng. Sci., 10(5), 425-435. https://doi.org/10.1016/0020-7225(72)90050-X.   DOI
34 Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72) 90070-5.   DOI
35 Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.   DOI
36 Fatahi-Vajari, A., Azimzadeh, Z. and Hussain, M. (2019), "Nonlinear coupled axial-torsional vibration of single-walled carbon nanotubes using Galerkin and Homotopy perturbation method", Micro Nano Lett., 14(14), 1366-1371. https://doi.org/10.1049/mnl.2019.0203   DOI
37 Flugge, S. (1973), Stresses in Shells, 2nd Edition, Springer, Berlin.
38 Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using nonlocal shear deformation and energy principle", Adv. Nano Res., 8(1), 49-58. https://doi.org/10.12989/anr.2020.8.1.049.   DOI
39 Gao, Y. and An, L. (2010), "A nonlocal elastic anisotropic shell model for microtubule buckling behaviors in cytoplasm", Physica E: Low-dimens. Syst. Nanostr., 42(9), 2406-2415. https://doi.org/10.1016/j.physe.2010.05.022.   DOI
40 Ghavanloo, E. and Fazelzadeh, S.A. (2009), "Vibrations characteristics of single walled carbon nanotubes based on the nonlocal Flugge shell theory", ASME J. Eng. Mater. Technol., 134, 011008. https://doi.org/10.1016/j.apm.2011.12.036.
41 Ke, L.L., Xiang, Y., Yang, J. and Kitipornchai, S. (2009), "Non-linear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory", Comput. Mater. Sci., 47(2), 409-417. https://doi.org/10.1016/j.commatsci.2009.09.002.   DOI
42 Taj, M., Safeer, M., Hussain, M., Naeem, M.N., Majeed, A., Ahmad, M., Khan, H.U. and Tounsi, A. (2020a), "Non-local orthotropic elastic shell model for vibration analysis of protein microtubules", Comput. Concrete, 25(3), 245-253. https://doi.org/10.12989/cac.2020.25.3.245.   DOI
43 Wang, C.M., Ma, Y.Q., Zhang, Y.Y. and Ang, K.K. (2006), "Buckling of double-walled carbon nanotubes modeled by solid shell elements", J. Appl. Phys., 99(11), 114317-114312. https://doi.org/10.1063/1.2202108.   DOI
44 Kasas, S., Cibert, C., Kis, A., De Rios, P.L., Riederer, B.M., Forro, L., Dietler, G. and Catsicas, S. (2004), "Oscillation modes of microtubules", Biol. Cell, 96(9), 697-700. https://doi.org/10.1016/j.biolcel.2004.09.002.   DOI
45 Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q. and Yakobson, B.I. (2008), "Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes", J. Mech. Phys. Solid., 56(12), 3475-3485. https://doi.org/10.1016/j.jmps.2008.08.010.   DOI
46 Hussain, M. and Naeem, M. (2018a), "Vibration of single-walled carbon nanotubes based on Donnell shell theory using wave propagation approach", Chapter, Intechopen, Novel Nanomaterials-Synthesis and Applications. https://doi.org/10.5772/intechopen.73503.
47 Hussain, M. and Naeem, M. (2019a), "Vibration characteristics of single-walled carbon nanotubes based on non-local elasticity theory using wave propagation approach (WPA) including chirality", Perspective of Carbon Nanotubes, IntechOpen.
48 Hussain, M. and Naeem, M.N. (2017), "Vibration analysis of single-walled carbon nanotubes using wave propagation approach", Mech. Sci., 8(1), 155-164. https://doi.org/10.5194/ms-8-155-2017.   DOI
49 Ansari, R., Rouhi, H. and Arash, B. (2013), "Vibration analysis of double-walled carbon nanotubes based on the nonlocal donnell shell via a new numerical approach", Int. J. Sci. Technol. Tran. B: Eng., 37, 91-105.
50 Hussain, M. and Naeem, M. (2019d), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.   DOI
51 Hussain, M. and Naeem, M.N. (2018b), "Effect of various edge conditions on free vibration characteristics of rectangular plates", Chapter, Intechopen, Advance Testing and Engineering.
52 Zarei, M.S., Kolahchi, R., Hajmohammad, M.H. and Maleki, M. (2017), "Seismic response of underwater fluid-conveying concrete pipes reinforced with $SiO_{2}$ nanoparticles and fiber reinforced polymer (FRP) layer", Soil Dyn. Earthq. Eng., 103, 76-85. https://doi.org/10.1016/j.soildyn.2017.09.009.   DOI
53 Wang, Q. and Liew, K.M. (2007), "Application of nonlocal continuum mechanics to static analysis of micro-and nano-structures", Phys. Lett. A, 363, 236-242. https://doi.org/10.1016/j.physleta.2006.10.093.   DOI
54 Xu, K.Y., Aifantis, E.C. and Yan, Y.H. (2008), "Vibrations of double walled carbon nanotubes with different boundary conditions between inner and outer tubes", J. Appl. Mech., 75(2), 021013. https://doi.org/10.1115/1.2793133.   DOI
55 Zamanian, M., Kolahchi, R. and Bidgoli, M.R. (2017), "Agglomeration effects on the buckling behaviour of embedded concrete columns reinforced with $SiO_{2}$ nano-particles", Wind Struct., 24(1), 43-57. https://doi.org/10.12989/was.2017.24.1.043.   DOI
56 Zhang, Y.Q., Liu, G.R. and Xie, X.Y. (2005), "Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity", Phys. Rev. B, 71(19), 195404. https://doi.org/10.1103/PhysRevB.71.195404.   DOI
57 Kolahchi, R., Keshtegar, B. and Fakhar, M.H. (2020), "Optimization of dynamic buckling for sandwich nanocomposite plates with sensor and actuator layer based on sinusoidal-visco-piezoelasticity theories using Grey Wolf algorithm", J. Sandw. Struct. Mater., 22(1), 3-27. https://doi.org/10.1177/1099636217731071.   DOI
58 Kolahchi, R. and Cheraghbak, A. (2017), "Agglomeration effects on the dynamic buckling of viscoelastic microplates reinforced with SWCNTs using Bolotin method", Nonlin. Dyn., 90(1), 479-492. https://doi.org/10.1007/s11071-017-3676-x.   DOI
59 Kolahchi, R., Hosseini, H. and Esmailpour, M. (2016a), "Differential cubature and quadrature-Bolotin methods for dynamic stability of embedded piezoelectric nanoplates based on visco-nonlocal-piezoelasticity theories", Compos. Struct., 157, 174-186. https://doi.org/10.1016/j.compstruct.2016.08.032.   DOI
60 Kolahchi, R., Hosseini, H., Fakhar, M.H., Taherifar, R. and Mahmoudi, M. (2019), "A numerical method for magneto-hygro-thermal postbuckling analysis of defective quadrilateral graphene sheets using higher order nonlocal strain gradient theory with different movable boundary conditions", Comput. Math. Appl., 78(6), 2018-2034. https://doi.org/10.1016/j.camwa.2019.03.042.   DOI
61 Hussain, M. and Naeem, M.N. (2019b), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos.: Part B. Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144.   DOI
62 Sharma, P., Singh, R. and Hussain, M. (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234.   DOI
63 Soldano, C. (2015), "Hybrid metal-based carbon nanotubes: Novel platform for multifunctional applications", Prog. Mater. Sci., 69, 183-212. https://doi.org/10.1016/j.pmatsci.2014.11.001.   DOI
64 Zhao, J., Buldum, A., Lu, J.P. and Han, J. (2002), "Gas molecule adsorption in carbon nanotubes and nanotubes bundles", Nanotechnol., 13(2), 195.   DOI
65 Hussain, M. and Naeem, M.N. (2019c), "Vibration characteristics of zigzag and chiral FGM rotating carbon nanotubes sandwich with ring supports", J. Mech. Eng. Sci., Part C, 233(16), 5763-5780. https://doi.org/10.1177/0954406219855095.   DOI
66 Hussain, M. and Naeem, M.N. (2020a), "Mass density effect on vibration of zigzag and chiral SWCNTs", J. Sandw. Struct. Mater., 1099636220906257. https://doi.org/10.1177/1099636220906257.
67 Hussain, M. and Naeem, M.N. (2020b), "Vibration characteristics of zigzag FGM single-walled carbon nanotubes based on Ritz method with ring-stiffeners", Indian Journal of Physics. (in Press)
68 Hussain, M., Naeem, M., Shahzad, A. and He, M. (2018a), "Vibration characteristics of fluid-filled functionally graded cylindrical material with ring supports", Chapter, Intechopen, Computational Fluid Dynamics. https://doi.org/10.5772/intechopen.72172.
69 Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017), "Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039.   DOI
70 Kolahchi, R., Safari, M. and Esmailpour, M. (2016b), "Dynamic stability analysis of temperature-dependent functionally graded CNT-reinforced visco-plates resting on orthotropic elastomeric medium", Compos. Struct., 150, 255-265. https://doi.org/10.1016/j.compstruct.2016.05.023.   DOI
71 Arani, A.J. and Kolahchi, R. (2016), "Buckling analysis of embedded concrete columns armed with carbon nanotubes", Comput. Concrete, 17(5), 567-578. http://dx.doi.org/10.12989/cac.2016.17.5.567.   DOI
72 Amnieh, H.B., Zamzam, M.S. and Kolahchi, R. (2018), "Dynamic analysis of non-homogeneous concrete blocks mixed by $SiO_{2}$ nanoparticles subjected to blast load experimentally and theoretically", Constr. Build. Mater., 174, 633-644. https://doi.org/10.1016/j.conbuildmat.2018.04.140.   DOI
73 Ansari, R. and Rouhi, H. (2012), "Nonlocal analytical Flugge shell model for the axial buckling of double-walled carbon nanotubes with different end conditions", Int. J. Nano Dimens., 7(3), 1250081. https://doi.org/10.1142/S179329201250018X.
74 Asghar, S., Hussain, M. and Naeem, M. (2019b), "Non-local effect on the vibration analysis of double walled carbon nanotubes based on Donnell shell theory", J.: Physica E: Lowdimens. Syst. Nanostr., 116, 113726. https://doi.org/10.1016/j.physe.2019.113726.   DOI
75 Asghar, S., Hussain, M. and Naeem, M.N. (2019a), "Non-local effect on the vibration analysis of double walled carbon nanotubes based on Donnell shell theory", J.: Physica E: Lowdimens. Syst. Nanostr., 116, 11326. https://doi.org/10.1016/j.physe.2019.113726.
76 Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.   DOI
77 Hussain, M., Naeem, M.N. and Isvandzibaei, M. (2018c), "Effect of Winkler and Pasternak elastic foundation on the vibration of rotating functionally graded material cylindrical shell", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 232(24), 4564-4577.   DOI
78 Hussain, M., Naeem, M.N. and Taj, M. (2019b), "Effect of length and thickness variations on the vibration of SWCNTs based on Flugge's shell model", Micro Nano Lett., 15(1), 1-6. https://doi.org/10.1177/0954406217753459.   DOI
79 Gohardani, O., Elola, M.C. and Elizetxea, C. (2014), "Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicle: A review of current and expected applications in aerospace sciences", Prog. Aerosp. Sci., 77, 42-68. https://doi.org/10.1016/j.paerosci.2014.05.002.   DOI
80 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.   DOI
81 Benguediab, S., Tounsi, A., Zidour, M. and Semmah, A. (2014), "Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes", Compos. Part B: Eng., 57, 21-24. https://doi.org/10.1016/j.compositesb.2013.08.020.   DOI
82 Hussain, M., Naeem, M.N., Shahzad, A., He, M. and Habib, S. (2018b), "Vibrations of rotating cylindrical shells with FGM using wave propagation approach", IMechE Part C: J Mech. Eng. Sci., 232(23), 4342-4356.   DOI
83 Motezaker, M., Jamali, M. and Kolahchi, R. (2020), "Application of differential cubature method for nonlocal vibration, buckling and bending response of annular nanoplates integrated by piezoelectric layers based on surface-higher order nonlocal-piezoelasticity theory", J. Comput. Appl. Math., 369, 112625. https://doi.org/10.1016/j.cam.2019.112625.   DOI
84 Mumrmu, T. and Pradhan, S.C. (2010), "Thermal Effects on the stability of embedded carbon nanotubes", Comput. Mater. Sci., 47(3), 721-726. https://doi.org/10.1016/j.commatsci.2009.10.015.   DOI
85 Nejad, M.Z., Hadi, A. and Rastgoo, A. (2016), "Buckling Analysis of arbitrary two-directional functionally graded Euler-Bernonllinano-beams based on non-local elasticity theory", Eng. Sci., 103, 1-10. https://doi.org/10.1016/j.ijengsci.2016.03.001.
86 Hussain, M., Naeem, M.N. and Tounsi, A. (2020e), "Response of orthotropic Kelvin modeling for single-walled carbon nanotubes: Frequency analysis", Advance Nano Research. (in Press)
87 Hussain, M., Naeem, M.N. and Tounsi. A. (2020a), "Simulating vibration of single-walled carbon nanotube based on Relagh-Ritz Method.
88 Pradhan, S.C. and Reddy, G.K. (2011), "Thermo mechanical buckling analysis of carbon nanotubes on Winkler foundation using non-local elasticity theory and DTM", Sadhana, 36(6), 1009-1019. https://doi.org/10.1007/s12046-011-0052-2.   DOI
89 Nogales, E. (2001), "Structural insights into microtubule function", Ann. Rev. Biophys. Biomolecul. Struct., 30(1), 397-420. https://doi.org/10.1146/annurev.biophys.30.1.397.   DOI
90 Paliwal, D.N., Kanagasabapathy, H. and Gupta, K.M. (1995), "The large deflection of an orthotropic cylindrical shell on a Pasternak foundation", Compos. Struct., 31(1), 31-37. https://doi.org/10.1016/0263-8223(94)00068-9.   DOI
91 Rafiee, R. and Moghadam, R.M. (2014), "On the modeling of carbon nanotubes: A critical review", Compos. Part B: Eng., 56, 435-449. https://doi.org/10.1016/j.compositesb.2013.08.037.   DOI
92 Rakrak, K., Zidour, M., Heireche, H., Bousahla, A.A. and Chemi, A. (2016), "Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory", Adv. Nano Res., 4(1), 31-44. http://dx.doi.org/10.12989/anr.2016.4.1.031.   DOI
93 Hajmohammad, M.H., Farrokhian, A. and Kolahchi, R. (2018a), "Smart control and vibration of viscoelastic actuator-multiphase nanocomposite conical shells-sensor considering hygrothermal load based on layerwise theory", Aerosp. Sci. Technol., 78, 260-270. https://doi.org/10.1016/j.ast.2018.04.030.   DOI
94 Hajmohammad, M.H., Kolahchi, R., Zarei, M.S. and Maleki, M. (2018c), "Earthquake induced dynamic deflection of submerged viscoelastic cylindrical shell reinforced by agglomerated CNTs considering thermal and moisture effects", Compos. Struct., 187, 498-508. https://doi.org/10.1016/j.compstruct.2017.12.004.   DOI
95 Kolahchi, R. (2017), "A comparative study on the bending, vibration and buckling of viscoelastic sandwich nano-plates based on different nonlocal theories using DC, HDQ and DQ methods", Aerosp. Sci. Technol., 66, 235-248. https://doi.org/10.1016/j.ast.2017.03.016.   DOI
96 Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Oskouei, A.N. (2017), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin Wall. Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016.   DOI
97 Kolohchi, R., Bidholi, M.M. and Heydari, M.M. (2015), "Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium", Struct. Eng. Mech., 55, 1001-1014. http://dx.doi.org/10.12989/sem.2015.55.5.1001.   DOI
98 Kostarelos, K., Bianco, A. and Prato, M. (2009), "Promises, facts and challenges for carbon nanotubes in imaging and therapeutics", Nat. Nanotechnol., 4(10), 627-633. https://doi.org/10.1038/nnano.2009.241.   DOI
99 Hussain, M., Naeem., M.N., Shahzad, A. and He, M. (2017), "Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach", AIP Adv., 7(4), 045114. https://doi.org/10.1063/1.4979112.   DOI
100 Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019a), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431-442. https://doi.org/10.12989/anr.2019.7.6.431.   DOI
101 Jassas, M.R., Bidgoli, M.R. and Kolahchi, R. (2019), "Forced vibration analysis of concrete slabs reinforced by agglomerated $SiO_{2}$ nanoparticles based on numerical methods", Constr. Build. Mater., 211, 796-806. https://doi.org/10.1016/j.conbuildmat.2019.03.263.   DOI
102 Jorio, A., Saito, R., Hafner, J.H., Lieber, C.M., Hunter, D.M., McClure, T., ... & Dresselhaus, M.S. (2001), "Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant raman scattering", Phys. Rev. Lett., 86(6), 1118-1121. https://doi.org/10.1103/PhysRevLett.86.1118.   DOI
103 Jung, N.Y. and Han, S.C. (2013), "Analysis of sigmoid functionally materials (S-FGM) nanoscale plates using nonlocal elasticity theory", Math. Prob. Eng., 2013, Article ID 476131, 10. http://dx.doi.org/10.1155/2013/476131.
104 Hashemi, S.H., Ilkhani, M.R. and Fadaee, M. (2012), "Identification of the validity of the Donnell and Sanders shell theories using an exact vibration analysis of the functionally graded thick cylindrical shell panel", Acta Mechanica, 223(5), 1101-1118. https://doi.org/10.1007/s00707-011-0601-0.   DOI
105 Hajmohammad, M.H., Kolahchi, R., Zarei, M.S. and Nouri, A.H. (2019), "Dynamic response of auxetic honeycomb plates integrated with agglomerated CNT-reinforced face sheets subjected to blast load based on visco-sinusoidal theory", Int. J. Mech. Sci., 153, 391-401. https://doi.org/10.1016/j.ijmecsci.2019.02.008.   DOI
106 Hajmohammad, M.H., Maleki, M. and Kolahchi, R. (2018b), "Seismic response of underwater concrete pipes conveying fluid covered with nano-fiber reinforced polymer layer", Soil Dyn. Earthq. Eng., 110, 18-27. https://doi.org/10.1016/j.soildyn.2018.04.002.   DOI
107 Hao, X., Qiang, H. and Xiaouh, Y. (2008), "Buckling of defective single-walled and double-walled carbon nanotubes under axial compression by molecular dynamic simulation", Compos. Sci. Technol., 68(7-8), 1809-1814. https://doi.org/10.1016/j.compscitech.2008.01.013   DOI
108 Heireche, H., Tounsi, A., Benzair, A., Maachou, M. and AddaBedia, E.A. (2008), "Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity", Physica E: Lowdimens. Syst. Nanostruct., 40(8), 2791-2799. https://doi.org/10.1016/j.physe.2007.12.021.   DOI
109 Hussain, M., Naeem, M.N. and Tounsi, A. (2020b), "On mixing the Rayleigh-Ritz formulation with Hankel's function for vibration of fluid-filled Fluid-filled cylindrical shell", Advances in Computational Design. (in Press)
110 Kolahchi, R. and Bidgoli, A.M. (2016), "Size-dependent sinusoidal beam model for dynamic instability of single-walled carbon nanotubes", Appl. Math. Mech., 37(2), 265-274. https://doi.org/10.1007/s10483-016-2030-8.   DOI
111 Hussain, M., Naeem, M.N. and Tounsi, A. (2020c), "Numerical Study for nonlocal vibration of orthotropic SWCNTs based on Kelvin's model", Advances in Concrete Construction. (in Press)
112 Hussain, M., Naeem, M.N. and Tounsi, A. (2020d), "Response of orthotropic Kelvin modeling for single-walled carbon nanotubes: Frequency analysis", Advance Nano Research. (in Press)
113 Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with "Nano-Fiber Reinforced Polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.5.1053.   DOI
114 Bouazza, M., Amara, K., Zidour, M., Tounsi, A. and El Abbas, A.B. (2014), "Thermal effect on buckling of multiwalled carbon nanotubes using different gradient elasticity theories", Nanosci. Nanotechnol., 4(2) 27-33. https://doi.org/10.5923/j.nn.20140402.02.
115 Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Bedia, E.A. (2020), "Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle", Struct. Eng. Mech., 9(73), 209-223. https://doi.org/10.12989/sem.2020.9.73.209.
116 Regi, M. (2007), "6-synthesis, characteristics and applications of carbon nanotubes: the case of aerospace engineering", Nanofiber. Nanotechnol. Text., 113-193. https://doi.org/10.1533/9781845693732.2.113.
117 Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45, 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.   DOI