1 |
Danesh, M., Farajpour, A. and Mohammadi, M. (2012), "Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method", Mech. Res. Commun., 39(1), 23-27.
DOI
|
2 |
Ebrahimi, F. and Mahmoodi, F. (2018), "Vibration analysis of carbon nanotubes with multiple cracks in thermal environment", Adv. Nano Res., Int. J., 6(1), 57-80.
|
3 |
Eringen, A.C. (1976), Nonlocal polar field models, Academic Press, New York, NY, USA.
|
4 |
Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface-waves", J. Appl. Phys., 54, 4703-4710.
DOI
|
5 |
Farokhi, H. and Ghayesh, M.H. (2015), "Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams", Int. J. Eng. Sci., 91, 12-33.
DOI
|
6 |
Farokhi, H., Ghayesh, M.H. and Amabili, M. (2013), "Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory", Int. J. Eng. Sci., 68, 11-23.
DOI
|
7 |
Fernandes, R., El-Borgi., S., Mousavi, S.M., Reddy, J.N. and Mechmoum, A. (2017), "Nonlinear sizedependent longitudinal vibration of carbon nanotubes embedded in an elastic medium", Phys. E: Low dimens. Syst. Nanostruct., 88(5), 18-25.
DOI
|
8 |
Fu, Y.M., Hong, J.W. and Wang, X.Q. (2006), "Analysis of nonlinear vibration for embedded carbon nanotubes", J. Sound Vib., 296(4-5), 746-756.
DOI
|
9 |
Ghayesh, M.H. (2014), "Nonlinear size dependent behavior of single-walled carbon nanotubes", Appl. Phys. A, 117(3), 1393-1399.
DOI
|
10 |
Ghayesh, M.H. and Farokhi, H. (2015a), "Chaotic motion of a parametrically excited microbeam", Int. J. Eng. Sci., 96, 34-45.
DOI
|
11 |
Ghayesh, M.H. andd Farokhi, H. (2015b), "Nonlinear dynamics of microplates", Int. J. Eng. Sci., 86, 60-73.
DOI
|
12 |
Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013a), "Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams", Int. J. Eng. Sci., 71, 1-14.
DOI
|
13 |
Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013b), "Nonlinear dynamics of a microscale beam based on the modified couple stress theory", Compos. Part B, 50, 318-324.
DOI
|
14 |
Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013c), "Nonlinear behaviour of electrically actuated MEMS resonators", Int. J. Eng. Sci., 71, 137-155.
|
15 |
Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013d), "Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory", Int. J. Eng. Sci., 63, 52-60.
|
16 |
Ghayesh, M.H., Farokhi, H. and Amabili, M. (2014), "In-plane and out-of-plane motion characteristics of microbeams with modal interactions", Compos. Part B, 60, 423-439.
DOI
|
17 |
Ghayesh, M.H., Farokhi, H. and Alici, G. (2016), "Size-dependent performance of microgyroscopes", Int. J. Eng. Sci., 100, 99-111.
DOI
|
18 |
Ghayesh, M.H. (2018a), "Functionally graded microbeams: Simultaneous presence of imperfection and viscoelasticity", Int. J. Mech. Sci., 140, 339-350.
DOI
|
19 |
Ghayesh, M.H. (2018b), "Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams", Appl. Math. Model., 59, 583-596.
DOI
|
20 |
Ghayesh, M.H. (2018c), "Dynamics of functionally graded viscoelastic microbeams", Int. J. Eng. Sci., 124,115-131.
DOI
|
21 |
Gholipour, A., Farokhi, H. and Ghayesh, M.H. (2015), "In-plane and out-of-plane nonlinear size-dependent dynamics of microplates", Nonlin. Dyn., 79, 1771-1785.
DOI
|
22 |
Hajnayeb, A. and Khadem, S.E. (2015), "An analytical study on the nonlinear vibration of a double-walled carbon nanotube", Struct. Eng. Mech., Int. J., 54(5), 987-998.
|
23 |
Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354, 56-58.
DOI
|
24 |
Ke, L.L., Xiang, Y., Yang, J. and Kitipornchai, S. (2009), "Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory", Computat. Mater. Sci., 47(2), 409-417.
DOI
|
25 |
Lai, W.M., Rubin, D. and Krempl, E. (2010), Introduction to Continuum Mechanics, Butterworth Heinemann.
|
26 |
Mousavi, S.M. and Fariborz, S.J. (2012), "Free vibration of a rod undergoing finite strain", J. Phys.: Conference Series, 382(1), 012011.
DOI
|
27 |
Murmu, T., Adhikari, S. and McCarthy, M.A. (2014), "Axial vibration of embedded nanorods under transverse magnetic field effects via nonlocal elastic continuum theory", J. Comput. Theor. Nanosci., 11, 1-7.
|
28 |
Peddieson, J., Buchanan, G.R. and McNitt, R.P. (2003), "Application of nonlocal continuum models to Nanotechnology", Int. J. Eng. Sci., 41(3-5), 305-312.
DOI
|
29 |
Pour, H.R., Vossough, H., Beygipoor, M.M.H.G. and Azimzadeh, A. (2015), "Nonlinear vibration analysis of a nonlocal sinusoidal shear deformation carbon nanotube using differential quadrature method", Struct. Eng. Mech., Int. J., 54(6), 1061-1073.
DOI
|
30 |
Rahmani, O., Refaeinejad, V. and Hosseini, S.A.H. (2017), "Assessment of various nonlocal higher order theories for the bending and buckling behavior of functionally graded nanobeams", Steel Compos. Struct., Int. J., 23(3), 339-350.
DOI
|
31 |
Sudak, L.J. (2003), "Column buckling of multiwalled carbon nanotubes using nonlocal continuum Mechanics", J. Appl. Phys., 94, 7281-7287.
DOI
|
32 |
Wang, L. and Hu, H. (2005), "Flexural wave propagation in single-walled carbon nanotubes", Phys. Rev. B, 71, 195412.
DOI
|
33 |
Wang, Q. and Wang, C.M. (2007), "The constitutive relation and small scale parameter of nonlocal continuum mechanics for modeling carbon nanotubes", Nanotechnology, 18(7), 075702.
DOI
|
34 |
Yang, J., Ke, L.L. and Kitipornchai, S. (2010), "Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", Phys. E: Low-dimens. Syst. Nanostruct., 42(5), 1727-1735.
DOI
|
35 |
Aydogdu, M. (2014), "Longitudinal wave propagation in multiwalled carbon nanotubes", Compos. Struct., 107, 578-584.
|
36 |
Adhikari, S., Murmu, T. and McCarthy, M.A. (2014), "Frequency domain analysis of nonlocal rods embedded in an elastic medium", Physica E: Low-dimens. Syst. Nanostruct., 59, 33-40.
DOI
|
37 |
Ansari, R. and Hemmatnezhad, M. (2011), "Nonlinear vibrations of embedded multi-walled carbon nanotubes using a variational approach", Math. Comput. Model., 53(5-6), 927-938.
DOI
|
38 |
Aydogdu, M. (2009), "Axial vibration of the nanorods with the nonlocal continuum rod model", Physica E: Low-dimens. Syst. Nanostruct., 41(5), 861-864.
DOI
|
39 |
Aydogdu, M. and Arda, M. (2016), "Forced vibration of nanorods using nonlocal elasticity", Adv. Nano Res., Int. J., 4(4), 265-279.
|
40 |
Aydogdu, M. and Elishakoff, I. (2014), "On the vibration of nanorods restrained by a linear spring in-span", Mech. Res. Commun., 57, 90-96.
DOI
|
41 |
Bagdatli, S.M. (2015), "Non-linear transverse vibrations of tensioned nanobeams using nonlocal beam theory", Struct. Eng. Mech., Int. J., 55(2), 281-298.
|
42 |
Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015), "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., Int. J., 3(1), 29-37.
DOI
|
43 |
Chaht, F.L., Kaci, A., Houari, M.S.A., Tounsi, A., Beg A.O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., Int. J., 18(2), 425-442.
DOI
|
44 |
Cigeroglu, E. and Samandari, H. (2012), "Nonlinear free vibration of double walled carbon nanotubes by using describing function method with multiple trial functions", Physica E: Low-dimens. Syst. Nanostruct., 46, 160-173.
|
45 |
Cigeroglu, E. and Samandari, H. (2014), "Nonlinear free vibrations of curved double walled carbon nanotubes using differential quadrature method", Physica E: Low-dimens. Syst. Nano Struct., 64, 95-105.
DOI
|