• Title/Summary/Keyword: nonlinear time-delay systems

Search Result 157, Processing Time 0.026 seconds

Discrete Representation Method of Nonlinear Time-Delay System in Control

  • Park, Ji-Hyang;Chong, Kil-To
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.327-332
    • /
    • 2003
  • A new discretization method for nonlinear system with time-delay is proposed. It is based on the well-known Taylor series expansion and the zero-order hold (ZOH) assumption. We know that a discretization of linear system can be obtained with the ZOH assumption and within the sampling interval. A similar line of thinking is available in nonlinear case. The mathematical structure of the new discretization method is explored and under the structure, the sampled-data representation of nonlinear system including time-delay is computed. Provided that the discrete form of the single input nonlinear system with time-delay is derived, this result is easily extended to nonlinear system with multi-input time-delay. For simplicity two inputs are considered in this study. It is enough to generalize that of multiple inputs. Finally, the time-discretization of non-affine nonlinear system with time-delay is investigated for apply all nonlinear system

  • PDF

Discrete-Time Output Feedback Control of Nonlinear Systems with Unknown Time-Delay : Fuzzy Logic Approach (미지의 시간지연을 갖는 비선형 시스템의 이산시간 퍼지 출력 궤환 제어)

  • 신현석;김은태;박민용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.5
    • /
    • pp.374-378
    • /
    • 2003
  • A new discrete-time fuzzy output feedback control method for nonlinear systems with unknown time-delay is proposed. Ma et al. proposed an analysis and design method of fuzzy controller and observer and Cao et al. extend this result to be applicable fir the nonlinear systems with known time-delay. For the case of unknown time-delay, we derive the sufficient condition f3r the asymptotic stability of the equilibrium Point by applying Lyapunov-Krasovskii theorem and convert this condition into the LMI problem.

Discretization of Nonlinear Systems with Delayed Multi-Input VIa Taylor Series and Scaling and Squaring Technique

  • Yuanliang Zhang;Chong Kil To
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.1975-1987
    • /
    • 2005
  • An input time delay always exists in practical systems. Analysis of the delay phenomenon in a continuous-time domain is sophisticated. It is appropriate to obtain its corresponding discrete-time model for implementation via digital computers. In this paper a new scheme for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption is proposed. The mathematical structure of the new discretization method is analyzed. On the basis of this structure the sampled-data representation of nonlinear systems with time-delayed multi-input is presented. The delayed multi-input general equation has been derived. In particular, the effect of the time-discretization method on key properties of nonlinear control systems, such as equilibrium properties and asymptotic stability, is examined. Additionally, hybrid discretization schemes that result from a combination of the scaling and squaring technique (SST) with the Taylor series expansion are also proposed, especially under conditions of very low sampling rates. Practical issues associated with the selection of the method's parameters to meet CPU time and accuracy requirements, are examined as well. A performance of the proposed method is evaluated using a nonlinear system with time delay maneuvering an automobile.

Observer Design for Discrete-Time Nonlinear Systems with Output Delay (출력지연을 갖는 이산시간 비선형 시스템의 관측기 설계)

  • Lee, Sung-Ryul
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.3
    • /
    • pp.26-30
    • /
    • 2012
  • This paper presents the observer design method for discrete-time nonlinear systems with delayed output. It is shown that by considering a nonlinear term of error dynamics as an additional state variable, the discrete-time nonlinear error dynamics with time delay can be transformed into the discrete-time linear one with time delay. Sufficient conditions for existence of state observer are characterized by linear matrix inequalities. Finally, an illustrative example is given in order to show the effectiveness of our design method.

On Feedback Linearization of Nonlinear Time-Delay Systems

  • Shin, Hee-Sub;Lim, Jong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1906-1908
    • /
    • 2004
  • We propose a result on the stabilization of nonlinear time-delay systems via the feedback linearization method. Using the predictor based control and the parametric coordinate transformation, we introduce a stabilizing controller to compensate time delay. Specifically, we present the delay-dependent stability analysis to makes the considered system stable. Also, an illustrative example is provided

  • PDF

A Stability Analysis Scheme for a Class of First-Order Nonlinear Time-Delay Systems (일종의 일차 비선형 시간 지연 시스템을 위한 안정성 분석 방법)

  • Choi, Joon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.554-557
    • /
    • 2008
  • We analyze the stability property of a class of nonlinear time-delay systems with time-varying delays. We present a time-delay independent sufficient condition for the global asymptotic stability. In order to prove the sufficient condition, we exploit the inherent property of the considered systems instead of applying the Krasovskii or Razumikhin stability theory that may cause the mathematical difficulty of analysis. We prove the sufficient condition by constructing two sequences that represent the lower and upper bound variations of system state in time, and showing the two sequences converge to an identical point, which is the equilibrium point of the system. The simulation results illustrate the validity of the sufficient condition for the global asymptotic stability.

Design of a controller for input time-delay nonlinear system

  • Choi, Hyung-Jo;Choi, Yong-Ho;Chong, Kil-To
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.548-552
    • /
    • 2005
  • In most physical processes, the transfer function includes a time-delay, and in the general distributed control system using a computer network, an inherent time-delay exists due to the spatial separation between controllers and actuators. Under the circumstance where an input time-delay exits, the system response overshoots and tends to diverge. For this reasons described above, a controller design method is proposed for a discrete nonlinear system including input time-delay, which adopts the time-discretization using Taylor series. Controllers are synthesized using an input/output linearization method. Finally, several cases of the computer simulations were conducted, and the results validate the proposed methods.

  • PDF

A State Observer of Nonlinear Systems with Delayed Output (지연된 출력을 갖는 비선형 시스템의 상태 관측기)

  • Lee, Sung-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.613-616
    • /
    • 2012
  • This paper proposes the state observer design for nonlinear systems with delayed output. It is shown that by considering a nonlinear term of error dynamics as an additional state variable, the nonlinear error dynamics with time delay can be transformed into the linear one with time delay. Sufficient conditions for existence of a state observer are characterized by linear matrix inequalities. Finally, an illustrative example is given in order to show the effectiveness of our design method.

Guaranteed Cost Control for Uncertain Time-Delay Systems with nonlinear Perturbations via Delayed Feedback (지연귀환을 통한 비선형 섭동이 존재하는 불확실 시간지연 시스템의 성능보장 제어)

  • Park, Ju-Hyun;Kwon, Oh-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.6
    • /
    • pp.581-588
    • /
    • 2007
  • In this paper, we propose a delayed feedback guaranteed cost controller design method for linear time-delay systems with norm-bounded parameter uncertainties and nonlinear perturbations. A quadratic cost function is considered as the performance measure for the given system. Based on the Lyapunov method, an LMI optimization problem is formulated to design a controller such that the closed-loop cost function value is not more than a specified upper bound for all admissible system uncertainties and nonlinear perturbations. Numerical example show the effectiveness of the proposed method.

Global Asymptotic Stability of a Class of Nonlinear Time-Delay Systems (일종의 비선형 시간 지연 시스템에 대한 광역 점근적 안정성)

  • Choi, Joon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.3
    • /
    • pp.187-191
    • /
    • 2007
  • We analyze the stability property of a class of nonlinear time-delay systems. We show that the state variable is bounded both below and above, and the lower and upper bounds of the state are obtained in terms of a system parameter by using the comparison lemma. We establish a time-delay independent sufficient condition for the global asymptotic stability by employing a Lyapunov-Krasovskii functional obtained from a change of the state variable. The simulation results illustrate the validity of the sufficient condition for the global asymptotic stability.