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1. INTRODUCTION 

 
Time-delay means that a delay occurred at the gap from the 

beginning of an order to the response for the order due to a 
time interval, or spatial distance between the components of a 
control system [1]. In other words, time-delay is a certain 
section where a system doesn’t respond to the signal of control 
elements. Time-delay using a state feedback in a closed 
system can be classified as two types: a state time-delay from 
sensors to a controller, and time-delay between the controller 
and actuators.  

Studies on the time-delay have traditionally been conducted 
in the fields of chemical process control, however, the 
importance of the study for the time-delay has been recently 
recognized by introducing a remote control system using 
networks [2][3][4]. It is impossible to design an controller 
without considering the time-delay that inevitably occurred 
due to the spatial distance in signal transmission routes and 
network congestion. 

Time-delay reduces gain and phase margins in a continuous 
system, causes a lowering of system performance, and makes 
the system unstable [1][8]. Although it is a simple linear 
time-invariable system that has time-delay for an input or state, 
the system becomes an unlimited dimensionless state. This 
time-delay makes it impossible to apply a classical controller 
design method. Thus, a controller design method to 
compensate for the effects of time-delay is required.  

In order to remove this time-delay, a method, which designs 
a controller after reanalyzing the system including the 
time-delay element, and obtains a dynamics model using a 
Pade approximation method, was proposed [6].  

A method that stabilizes a remote robot system using an 
asymptotic stability of reflecting torque for the design of a 
force-reflecting robot system was proposed. This method 
calculates the conditions for the moment of inertia and 
marginal range for reflecting torque according to time passed 
in a master-slave system, which has time-delay. In addition, 
this method makes it easy to design a force-reflecting robot 
system by analyzing the stability region of a linear system, and 
focuses on the improvement of the relative stability of a 

time-delay system [7].  
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A typical control method for a system, which has            
time-delay, is a predictive control [10]. A control method 
using the Smith predictor has been proposed in the fields of 
process control. This method configures each model with the 
objective to control the system and time-delay. Thus, it 
designs a system to remove the effects of time-delay in the 
characteristic equation of the whole closed loop transfer 
function through a structural method. Thus, the Smith 
predictor makes it possible to design a controller by 
considering a system, which has time-delay, to a system, 
which doesn’t include time-delay. this method has the merit 
that a controller can be designed using a structural method, 
regardless of the effects of time-delay, however, it can only be 
applied to a linear system. In addition, this method has the 
demerit that an exact model equation for the system and 
time-delay is required [1][2][8][9].  

An estimator is also proposed as an alternative method of 
predictive control. This estimator calculates state changes in 
the delayed time using an analysis of the time region of a state 
equation, and obtains an undelayed and exact plant state for 
the time that is required to calculate control signals. However, 
it is impossible to compensate for the time-delay for the input 
of the controller [4][5].  

Studies on time-delay have been largely conducted for a 
linear system in an continuous time region. However, an 
actual physical system basically has nonlinearity, and most 
control systems in the present time are designed using a digital 
computer system. Thus, an analysis, which is performed in the 
discrete-time region for a nonlinear system that has time-delay, 
and the design of a controller according to the analysis is an 
important step. Accordingly, this paper deals with designing a 
controller through a system discretization using a 
Taylor-series, and linearization for inputs and outputs for a 
nonlinear system that  has input time-delay. 

 
2. DISCRETIZATION OF A NONLINEAR 

SYSTEM 
 
  A discrete-time model for a nonlinear continuous-time control 
system that has time-delay can be obtained using a Taylor-series under 
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the assumption of zero-order hold. This discretization method 
provides a relatively more exact discrete model compared to a 
continuous-time nonlinear system, and makes it possible to apply the 
existing nonlinear control method to a discrete system, which includes 
time-delay.  
  A continuous-time nonlinear control system, which has a single 
input, can be presented as Eq. (1) using a state-space expression.  

( ) ( ( )) ( ( )) ( )dx t f x t g x t u t D
dt

= + −                 (1) 

where  represents the system state,  is an 
input variable,  is time-delay, and 

nRXx ⊂∈ u R∈
D ( )f x  and ( )g x  are 

nonlinear functions for x , respectively. In addition, the 
zero-order hold was assumed for a fixed sampling period, and 
constant input in a single sampling region.  

( ) ( ) ( ) constant,u t u kT u k kT t kT T= ≡ = ≤ < +       
D qT γ= +                                      (2) 
where is sampling phase, q  is an integer multiple of 

 for the sampling period, 
T

{1, 2 , 3 , . . .}q ∈ γ  is a small 
time-delay of 0 Tγ< ≤ . The delayed input variable was 

applied to the system that has values for the different sampling 
regions, as presented in Eq. (3).  

( 1) if
( )

( ) if
u k q kT t kT

u t D
u k q kT t kT T

γ
γ

− − ≤ < +⎧
− = ⎨ − + ≤ <⎩ +

     (3) 

      
           Fig. 1 Delayed input signal 
  A discrete system for the nonlinear system that has input 
time-delay can be configured as Eq. (4).  
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where ( )x k  is the value of a state vector of x  at 

, kt t kT= = M is truncation order of the Taylor-series. 
[ ] ( , )lA x u  s cyclically defined by Eq. (5).  
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  The discrete expression for Eq. (1), which is the original 
continuous-time systems, is presented by Eq. (6).  

( 1) ( ( ), ( 1), ( )M
T )x k x k u k q u k+ = Φ − − − q             (6) 

where the function M
TΦ depends on the sampling period of 

and truncation order of T M . As mentioned above, the 
discretization of a nonlinear system using a Taylor-series 
presented better results than that of the existing Euler method. 
The comparison can be performed using discretization errors. 
 

3. Design of a controller 
3.1 Linearization of input/output for a continuous-time 

linear system 
  Linearization of inputs/outputs linearizes a nonlinear system 
using an algebraical means through an exact state transition 
and feedback, instead of a liner approximation method for a 
nonlinear system. Then, it applies a linear control method. 
This method transfers the original system into a simple 
equivalent model, and has been used to control many 
industrial fields, such as aircrafts, robots, medical purposes, 
and other various fields.  
  Let’s consider issues for the design of a controller for a 
nonlinear system as follows.  

[ , ]x x u= Φ&                                      (7) 

[ ]y h x=                                    (8) 
where the output and input u of the system can be 

obtained using differentiation as follows. This is expressed as 
a relative order of . If the output of the system has non 

limited order, the handled input will not affect the output. The 
output of the system in general issues of a control system 

should be applied to a limited and relative order for the input 
.  

y

r y

y

u
( )[ ], 0,..., 1

l
l

l

d y h x l r
dt
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r

d y h x u f x u f x
dt

−= Φ = +              (10) 

  Eq. (10) can be obtained through the differentiations with 
relative orders in order to verify the relationship between 
inputs and outputs. 1f  and 2f  are the functions for a 
system state. In Eq. (10), if the input  is configured by Eq. 
(11), the nonlinearity of Eq. (10) will be removed. then, a 
simple linear differential equation for the output and new 
internal input 

u

y
ν can be obtained, as presented in Eq. (12).  

1
2

1 (u
f

ν= − )f                                  (11) 

( )ry ν=                                         (12) 

  Because a linear control method can be applied to Eq. (12), 
the tracking control problem can be solved using the method 
as follows. When the internal input ν can be configured as Eq. 
(14) using Eq. (12) through the differentiation of Eq. (13), 
which presents the output and target value , whit 

relative orders. In this case, the tracking error for the entire 
closed circuit system is presented as Eq. (15).  

y dy

de y y= −                                      (13) 
( ) ( 1) ( 2)

1
r r r

r rdy k e k e kν − −
−= − − − −L 1e               (14) 

( ) ( 1) ( 2)
1 1 0r r r

r re k e k e k e− −
−+ + + +L =              (15) 

  If the coefficient  in each item of the equations is 
configured to satisfy a stable dynamics equation, in which Eq. 
(15) converges to zero, the input that makes it possible to 
obtain a tracking property will be performed by applying a 
reverse process from Eq. (11) to Eq. (15).  

k

u

  Fig. 2 presents the configuration of design for input/output 
linearization controller of a nonlinear system. 
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     Fig. 2 Configuration of the design for input/output  
          linearization 
 
3.2 Input/output linearization of a discrete-time nonlinear 
system 

 Design of a controller using input/output linearization for 
a nonlinear system in the discrete-time region follows the 
same method in a continuous-time nonlinear system. Using the 
discrete-time nonlinear system presented in Eq. (16), the 
relative order and relative relationship between input and 
output can be verified as expressed in Eq. (17).  

( 1) [ ( ), ( )]
( ) [ ( )]

,x k x k u
y k h x k

+ = Φ
=

k                           (16)        ⎢ ⎥
⎢ ⎥              

             (25) 

2 1( ) ( ( )) ( ) ( ( ))y k r f x k u k f x k+ = +                   (17) 

where 1f  and 2f  are the functions related to the state of a 
discrete-time system. If the control input is configured by 
Eq. (18), the nonlinearity of Eq. (17) will be removed. In 
addition, the system can be expressed as a simple linear 
differential equation for the output and internal input 

u

y ν , 

as presented in Eq. (19).  

{ 1
2

1( ) ( ) ( ( ))
( ( ))

u k k f x k
f x k

ν= − }

)

                   (18) 

( ) (y k r kν+ =                                  (19) 

  As described above, the tracking issue for a linearized 
system is to be solved using a linear control method as follows. 
The internal input ν can be obtained as expressed in Eq. (21) 
using a transferring calculation with relative orders for Eq. 
(20). then, the coefficient k  is adjusted to satisfy a 
convergence property, which is required to a dynamics 
equation for the tracking error of the entire closed circuit 
system presented in Eq. (22).  

( ) ( ) ( )de k y k y k= −                               (20) 

1 1( ) ( ) ( 1) ( 2) ( )d r rk y k r k e k r k e k r k e kν −= + − + − − + − − −L  (21) 

1 1( ) ( 1) ( 2) ( )r re k r k e k r k e k r k e k−+ + + − + + − + + =L 0   (22) 

  In the tracking control issue of a discrete-time nonlinear 
system, the input u  can be obtained using reverse 
substitution of the mentioned processes. In addition, the 
system output converges to the target value of  by 

applying this value.  
dy

 
3.3 Design of a controller for a discrete-time nonlinear 
system with time-delay 
  The supplementary variables for the past input variables 
defined as Eq. (23).  
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Then, the dynamics equations are configured by Eq. (24).  
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Thus, Eq. (1) can be noted as a discrete-time nonlinear system 
as presented in Eq. (25), in which the equation presents an 
expanded state space.  

1 2

1 2

1

( 1) ( ( ), ( ), ( ))
( 1) ( )

( 1) ( )

M
T

q

x k x k z k z k
z k z k

z k u k+

⎡ ⎤+⎡ ⎤ Φ
⎢ ⎥⎢ ⎥+ ⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥
⎢ ⎥

+ ⎢ ⎥⎣ ⎦ ⎣ ⎦

M M

Let’s define, [ ]1 1, , , T
qx x z z += L  and 

1 2

2

( , , )
( )

( , )

M
T

M
T

x z z
z k

x u

u

⎡ ⎤Φ
⎢ ⎥
⎢ ⎥Φ = ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M
, then Eq. (25) can be expressed as 

a simple formula, as presented in Eq. (26).  
( 1) ( ( ), ( ))M

Tx k x k u+ =Φ k                          (26) 

  The relative order of the system for the output equation of 
Eq. (27) can be derived using a transferring equation, as 
presented in Eq. (28). In addition, if the control input is 
configured as Eq. (29), the linearity of the system will be 
numerically removed.  

( ) ( ( ))y k h x k=                                  (27) 

( )1( ) ( ( ), ( )) ( ) ( ) ( ) (r M
Ty k r h x k u k F k G k u k kν−+ = Φ = + = )   (28) 

{1( ) ( ) ( )
( )

u k k F k
G k

ν= − }                         (29) 

{ }( ) ( )F k F x k=  and { }( ) ( )G k G x k=  in Eq. (29) are the 

function for the present state value and past input variables of 
( ) [ ( 1), ( ), , ( 1)]z k u k q u k q u k= − − − −L , and  is the 

internal input.  

( )v k

  In regards to the tracking issue, if the dynamics equation 
and internal input are defined by Eq. (30) and Eq. (31), the 
output property of the system is only followed by an error 
dynamics equation.  

1 1( ) ( 1) ( 2) ( )r re k r k e k r k e k r k e k− 0+ + + − + + − + + =L  (30) 

1 2 1 1( ) (1 ) ( 1) ( 2) ( )r d r rv k k k k y k y k r k y k r k y k−= + + + − + − − + − − −L L   (31) 

  Fig. 3 presents the configuration of the proposed control 
system.  
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   Fig. 3 Design of a controller for a nonlinear system with                                                              
        input time-delay 
 

      
4. SIMULATION 

  In order to verify the proposed method, this study 
performed two simulations for nonlinear system, which has an 
input time-delay. The systems used in this simulation were a 
simple CSTR system and a Van der Pol equation. Van der Pol 
system is a typical nonlinear system. This system can be 
analyzed using a mass-spring-damper system, which has a 
position-dependent damping coefficient, and a RLC electric 
circuit. If this system has an initial value besides an 
equilibrium point, a periodical vibration will be maintained in 
a limited region. This periodical vibration is called a limit 
cycle. Fig. 4 presents a phase portrait of the system.  

 
      Fig. 4 Phase portraits of the Van der Pol system 
 
The system can be expressed using a dynamics equation as 
presented in Eq. (32). The state space expression is Eq. (33).  
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where the state vector is [ ] [ ]1 2
T TX X X x x= = & . In the case of 

the existing input time-delay, such as D qT γ= + , the discrete 
expression is expressed as Eq. (34) using the Taylor’s 
discretization method.  
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where the time of the partial differentiation of ( , )lA x u is to 
be cyclically defined as follows.  
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  Fig. 5 presents the output errors of a continuous system and 
discrete system for the behaviors of a limited phase, in which 
the system has an initial value beside an equilibrium point. In 
addition, there is no input time-delay. This revealed that the 
discrete system using a Taylor-series presented superior 
characteristics to the existing Euler equation when applied to a 
discrete system.  
  

     Fig. 5 Output error of the system with an initial value                
          (0,0) [0.1 0]Tx =
 
  A controller was designed using the input/output 
linearization method previously mentioned above for the input 
time-delay, such as 0T, 1T, 2T and 3T. The discretization was 
performed using the truncation order of M=2. The relative 
orders for each case were obtained as Eq. (36). In addition, the 
output error dynamics equation was defined as Eq. (37), and 
the controller was designed as Eq. (38).  
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  Fig. 6 presents the output of the system for each case where 
the output shows a simple time-transition removed by the 
time-delay effect.  
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    Fig. 6 Output of the nonlinear control system with input  

 
−+−−= )1(3' 2

         time-delay 
   
  Second computer simulation was conducted for CSTR 
system. CSTR system is a common nonlinear system in 
chemical process. Dynamic equation of the system is 
presented in Eq. (39). 

xy =
  In the case of the existing time-delay, such as D qT γ= + , 
the discrete expression is expressed as Eq. (4) and Eq. (5) 
using the Taylor’s discretization method. A controller was 
designed using the input/output linearization method 
previously mentioned above for the input time-delay, such as 
0T, 1T and , 2T. The discre

uxxxx                            (39) 

tization was performed using the 
truncation order of M=2.  
  Fig. 7 presents the output of the system for each case where 
the output shows a simple time-transition removed by the 

me-delay effect as the first simulation result.  ti
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 Fig. 7 Output of the CSTR system with input time-delay 

e applied to a large time-delay and variable 
me-delay.  
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5. CONCLUSIONS 

 In order to compensate for the input time-delay of a 
nonlinear system, this study proposed a design method, which 
supported an exact discretization for a nonlinear system that 
has time-delay, and designed a controller for a discrete system 
that included time-delay using a Taylor-series. The proposed 
control system that has the characteristics of an independent 
output for time-delay was verified using a simulation. This 
method has the demerit that the system is to be reanalyzed 
according to the time-delay. However, it has the merit that the 
system can b
ti
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